

www.openda.org

Delft3D numerical model calibration with OpenDA

Martin Verlaan, Stef Hummel, Julius Sumihar, Firmijn Zijl, Albrecht Weerts, Ghada El Serafy, Herman Gerritsen, ... Deltares &

Nils van Velzen, Alja Vrieling, Jeroen Gerrits, ...

Vortech

Outline

Installation of OpenDA

- Installation of OpenDA binaries
- Automated calibration concepts
- A simple calibration example

Calibration for Delft3D-Flow

- Black-box model wrappers
- Installation of Delft3D wrapper
- Calibration example with Delft3D-Flow for a simplified estuary
- Next steps...

Installation of Windows binaries

- 1. Locate zip-file on sourceforge (use link on http://www.openda.org)
- 2. Download openda v2.0 windows binaries
- 3. Unpack zip-file (use a path without spaces)
- 4. Make a shortcut for run_openda_gui.bat
- 5. Test by starting the batch script

Known issues:

- A 32bit java environment is included to avoid issues with incompatible java versions.
- Sometimes existing directories in the PATH environment variable cause trouble.

Download OpenDA

Activities Eir efox			Wed Apr 4, 18:49		🚯 🐠 🎅 🔒 🖾 verlaanm
	oper	_data_assimilation - Browse /openda	_version_2.0/win32 at So	ourceForge.net - Mozilla Firefox	_ _ ×
<u>F</u> ile <u>E</u> dit <u>V</u> iew Hi <u>s</u> tory	<u>B</u> ookmarks <u>T</u> ools <u>H</u> elp				
📀 📎 😵 📑 sourc	eforge.net/projects/openda	/files/openda_version_2.0/win32/		☆ 🖌 🌒 🚼 🗸 Google	Q 🎧 🤗 🗸
🗂 prive 🗸 💼 computer 🗸	🗂 waves 🌱 📋 svsd 🌱 📋]tides 🗸 🗂 werk 🗸 🗂 zoeken 🗸 🤗	printer 🔋 Citrix Rivierduin	en 🔅 Citrix Deltares 🔅 intranet deltares	👍 Google Docs »
🛿 OpenDA : an open-sour	ce da 🕱 🔾 open_data_a	ssimilation - Bro 🗙 💠			~
	sourceforge	Find Open Source Software Browse B	log Support Jobs Newsl	etters Resources Register	Log In
	🧿 chr	OME De simpele browser	Download Chrome voor L	inux Smarter IT Serv Technology Services that c deliver measurable results Geeknet 👾	
	open_data_a	ssimilation 👞 stefhummel, verlaanm			=
	Summary Files Revi	ews Support Develop Mailing Lists	Forums Code		_
	Looking for the latest ver	sion? Download OpenDA_2.0_r3242_l	bin.zip (129.5 MB)	Gratis	
	Name	2.0 / win32 Modified	Size	persooninjkrieluste	5L
	↑ Parent folder			De meest	
	OpenDA_2.0_r3256_src	zip 2012-03-13	302.7 MB	nauwkeunge persoonlijkheidstest	
	OpenDA_2.0_r3245_bin	zip 2012-02-19	100.8 MB	verkrijgbaar is op het internet.	
	Totals: 2 Items	lick to download OpenDA_2.0_r3245_b	in.zip ^{3.5} MB	Onlidek jouw ware a Start de test	and
http://sourceforge.net/proj	iects/openda/files/n_2.0/v	vin32/OpenDA_2.0_r3245_bin_zin/dowr	load		

Automated calibration concepts

- Many models contain uncertain parameters, often related to friction, boundary conditions or sub-soil material properties
- Model output can be validated against observations.

Optimization of a costfunction

- Calibration is defined as an optimization problem
- Elaborate background in statistics: log-likelihood function
- Measure distance or misfit of model to observations
- Depends on uncertainty of observations

$$J_p = \sum_t \frac{(y_o(t) - y_m(t))^2}{\sigma_o^2}$$

- May be ill posed!
- Additional background term

$$J_p = \frac{(p-p_0)^2}{\sigma_p^2}$$

DUD (efficient for nearly linear models)

- Start with running:
 - first guess
 - & modified run for each parameter
- Linearize the model around these values
- Solve linear problem
- If this is an improvement update linearization with new point
- Else do a line-search (only until there is improvement)

A simple calibration example

- Run DUD calibration for linear oscillator
 - Start OpenDA gui
 - Open examples/simple_oscillator/Dud.oda
 - Start computations

							Dud.oda – OpenDaApplication	_ 0 X
<u>E</u> ile <u>C</u> ontro	I							
📹 Open	Save	▶ s	start	Stop	III F	Pause		
Input Co	ntrol Out	tput	Cost	function			I	
	Iteration					Cost	value[0]	value[1]
				17.756			8 1.571	
				18.651			9 1.571	
				0.235			8 1.696	
				0.144			8.663 1./1	
				3.035E-4			9.057 1.099	
ntimum				3.8122E-0	6		9.004 1.7	11
sennann				DIOILLOL	•		0100110	-
							Calibration parameter _	□ ×
							value[0] value[0]	
					() 0 8.80 9.00	-	\land	
					value[0] 8.20 8.40 8.6			
					8.00	0.0	1.0 2.0 3.0 4.0 5.0 6.0 iteration (index of model run)	

Black-box model wrappers

TODO

- One dimensional model
- Tidal boundary M2 (12h25min) and S2 (12h)
- Constant slope depth
- Constant river inflow
- 3 Observation locations
- Observations are not real but generated with 'truth' model.

Exercise

- Download openda_d3d_plugin.zip from http://www.openda.org/course and unpack to openda/bin
- Download estuary.zip from http://www.openda.org/course and unpack
- Run the simulation with OpenDA, using the main OpenDA file simulate.oda
- Prepare some time-series plots with quickplot
 - Start matlab in direcory src/tools_lgpl/matlab/quickplot/progsrc and run d3d_qp
 - the observations are available as tekal file, for including them in the plots (use add to plot and change the color)
 - Output can be found in estuary/work/work0
- What are the most likely causes of differences between observations and model?

Estuary example Delft3D

Acti	vities	Firefox						Wed Ap	- 4, 1
							Index	x of /course	- Mo
<u>F</u> ile	<u>E</u> dit	<u>V</u> iew Hi <u>s</u> tory	<u>B</u> ookmarks	<u>T</u> ools	<u>H</u> elp				
\$~		* 🖸 www	.openda.org/c	:ourse/					
🗂 pr	ive 🗸	🛅 computer 🗸	🛅 waves 🛩	🛅 svs	d ✓ [™] 🛅 tides ❤	🛅 werk 🗸	🛅 zoeken 🗸	🖲 printer	(a) c
🗍 In	dex o	f /course	4	•					

Index of /course

- Parent Directory
- <u>calibration.pdf</u>
- estuary.zip
- <u>estuary_calibration_exercise.pdf</u>
- kalman_filter.pdf
- <u>openda_application.pdf</u>
- <u>openda_blackbox_wrapper.pdf</u>
- <u>openda_d3d_plugin.zip</u>
- openda_exercises.pdf
- <u>openda_introduction.pdf</u>
- <u>openda_software_design.pdf</u>
- <u>openda_student.zip</u>

Quickplot

Initial performance

Initial performance

Initial performance

Exercise

- Run the calibration for a globally constant change to the bathymetry (experiment DEP)
 - Start OpenDA with estuary/calibration.oda
 - Look at the output in the control tab and output tab
 - The output of each of the runs can be found in work/work<number>
 - Plot the time-series with quickplot.
- Is this what you expected?

Calibration Depth

DEP output Station 2

DEP output Station 3

Since the amplitude shows a similar deviation from observations in the whole domain we add calibration of M2 tides at boundary.

- Add the calibration (experiment DEP+M2)
 - Uncomment M2 section in stochModel/D3DStochModel.xml
 - Run calibration
 - Look at the output and plot the time-series.
 - Is this what you expected?

Calibration Depth+M2

Station 1		Name	First guess	DEP	DEP+M2
		Station 1	9.2 cm	4.5	1.1
		Station 2	12.7	5.0	1.4
1 _{[\}		Station 3	7.1	4.9	1.1
0.8-		Cost	574	134	8.4
0.0	. Λ	Δ ,			
0.6 -		Λ Λ Λ	\wedge		
↑ 0.4 					
ee 0.2-					
0 -					
-0.2 -					
-0.4 1 Jan	2 Jan	3 Jan time →	4 Jan 5 Jan		OpenDA

DEP+M2 output Station 2

DEP+M2 output Station 3

The output looks nice. The cost-function is much lower, but there is still a problem...

- Make a longer run with the final run of experiment DEP+M2
 - Modify work/work<last_number>/estuary.mdf and change the Tstop = 2.3040000e+004 which is 17-1-1991 0:00h; alternatively use the gui.
 - Run deltares_hydro.exe for this case
 - Make time-series plots
 - What is wrong?

Long run for DEP+M2 result

Exercise

The error in S2 was attributed to M2. Let's make fix this with a longer simulation and adding S2 to the calibration

- Add S2 to calibration and lengthen simulation experiment DEP+M2
 - Modify input_d3d/estuary.mdf and change the Tstop = 2.3040000e+004 which is 17-1-1991 0:00h; see also estuary_long.mdf
 - Lengthen the observations in stochobserver/noosObservations.xml to 17-1-1009 0:00h; see noosObservations_long.xml
 - Uncomment S2 section in stochModel/D3DStochModel.xml
 - Run calibration with OpenDA
- What would go wrong if we would use only 3 days of observations for calibration of S2 and M2?

Calibration DEP+M2+S2

Name	First guess	DEP+M2+ S2
Station 1		0.9cm
Station 2		0.7
Station 3		0.2
Cost	5281	1.5

Parameter	Final value (change)	True values	
M2.Amplitude	0.1 cm	0.0 cm	
M2.Phase	0.4 degr	0.0 degr	
S2.Amplitude	10.1 cm	10.0 cm	
S2.Phase	0.3 degr	0.0 degr	
Depth	-92cm	-100cm	enDA
		v p	

And much more

- Calibration of roughness
- Calibrate blocks of the grid for depth or roughness
- Proportional instead of additive modification of parameters
- Make subselections of observations
- Restarts
- Parallel computing
- Output formats and selection
- Try other algorithms
- Calibration of other models, such as sobek, swan or waqua
-

Calibration of a storm surge model

