
VORtech Computing
the Scientific Software Engineers

P.O. Box 260

2600 AG Delft

The Netherlands

tel. +31(0)15-285 0125

fax. +31(0)15-285 0126
vortech@vortech.nl

Data Assimilation in

OpenFOAM using OpenDA

Technical Report TR12-03 versie 1.1

Date

January 8, 2013

Author(s)

J.H. Seubers

By Order of

Vortech B.V.; project A06t

No part of this report may be reproduced, stored in a retrieval system or
transmitted in any form or by any means, mechanical, photocopying, record-
ing or otherwise, without the prior written permission of VORtech Comput-
ing, P.O.Box 260, 2600 AG DELFT, the Netherlands. This permission will

not be given without the prior written permission of the organisation or

person that has ordered this report.

c© VORtech Computing 2013.

VORtech Computing

2 Technical Report TR12-03 versie 1.1

VORtech Computing

Technical Report TR12-03 versie 1.1 3

Log-sheet

Version Author Date Description Review

0.1 JHS 24-04-2012 Draft version

0.2 JHS 29-06-2012 Release candidate Mark

1.0 JHS 01-07-2012 Release version Nils

1.1 JHS 08-01-2013 Update for publication Nils

File location: /v3/A06t OpenFOAM/stage Henk/report

VORtech Computing

4 Technical Report TR12-03 versie 1.1

VORtech Computing

Technical Report TR12-03 versie 1.1 5

Contents

Log-sheet 3

1 Design 9

1.1 Use cases . 9

1.2 Design for verification . 10

1.3 Implementation . 12

2 Stochastic modelling 13

2.1 Terminology . 13

2.2 Conservation of flow quantities . 15

2.2.1 Conditions on the filter . 15

2.2.2 Conditions on the stochastic model . 16

2.3 Generating random fields . 16

3 Users guide 19

3.1 Concepts in OpenDA . 19

3.2 1D periodic advection tutorial . 20

3.2.1 Algorithm setup . 21

3.2.2 Model setup . 23

3.2.3 Interaction and I/O . 24

3.2.4 Running the algorithm . 26

3.3 2D lid driven cavity tutorial . 26

3.3.1 Algorithm setup . 27

3.3.2 Model setup . 27

3.3.3 Interaction and I/O . 28

VORtech Computing

6 Technical Report TR12-03 versie 1.1

3.3.4 Running the algorithm . 29

4 Conclusions and Recommendations 31

A Assignment 33

B Configuration schemas 35

C Options reference 37

C.1 Time formatting options . 37

C.2 OpenFoamDictionary options . 38

C.3 CsvDataObject options . 38

C.4 Noise model options . 39

Product flyer 41

VORtech Computing

Technical Report TR12-03 versie 1.1 7

Introduction

Theoretical and experimental aerodynamics are often complementary in the pursuit of solv-
ing aerodynamic questions. Both lead to results independently, each method with its own
limitations. To combine the two approaches therefore opens up possibilities to overcome the
limitations of both. Measurements do not have predicting power and are not available ev-
erywhere, whereas simulations represent only a part of reality and the involved uncertainties
tend to build up over time. These are just a few examples of problems that can be overcome
by data assimilation: the incorporation of measurement results into simulation estimates.

This report documents the coupling between OpenDA1 (a framework for data assimilation)
and OpenFOAM2 (a CFD toolbox). This coupling makes it possible to perform various data
assimilation procedures on simulation cases created in OpenFOAM. Two demonstration cases
are included that prove the system operational and well performing.

The technical part of this document is divided into three chapters. The use cases and the
design overview are given in chapter 1. Chapter 2 treats the mathematical background and
justification of the developed models and algorithms. The operation of the system is docu-
mented in the user guide (chapter 3), where also the two demonstration cases are treated.
The results are summarized and recommendations for future development are discussed in
chapter 4.

This report is the result of a 3 month internship at VORtech, in line with the MSc programme
of Aerodynamics at the TU Delft. The assignment for this internship can be found in appendix
A.

1 OpenDA is supported by the OpenDA association. See http://www.openda.org
2 OpenFOAM is made available by the OpenFOAM foundation. See http://www.openfoam.com

http://www.openda.org
http://www.openfoam.com

VORtech Computing

8 Technical Report TR12-03 versie 1.1

VORtech Computing

Technical Report TR12-03 versie 1.1 9

Chapter 1

Design

In this chapter, the implementation design of the OpenDA-OpenFOAM coupling is explained.
Some cases where data assimilation would be of use in aerodynamic applications are given in
section 1.1. Then the design methodology is treated in section 1.2, and finally the implemen-
tation overview is given in 1.3.

1.1 Use cases

The most important feature of data assimilation, the possibility to combine the strengths
of experiment and simulation, makes it useful in a range of research applications. Possible
applications for data assimilation in aerodynamics are:

1. Interpolating (extrapolating) measured quantities in time and space.

2. Extracting meaningful data from noisy measurements.

3. Estimating uncertain terms in governing equations.

4. Separating error sources when performing model validation.

5. Assisting in the selection of measurement locations.

Each of these envisioned applications is interesting in itself, and it would be too much to
treat them all in this report. The users guide (chapter 3) has some examples of estimation of
uncertain terms.

Interpolation of measurements makes it possible to increase the spatial or temporal resolution
of measurement results, if the underlying process is known. In a similar way, estimations
can be improved for noisy measurements on a well predictable process. The expected value
of the uncertain terms in the process can be determined a posteriori (based on the given

VORtech Computing

10 Technical Report TR12-03 versie 1.1

measurements)1. For a large enough ensemble, when the covariances may estimated accurately
enough, it may even be possible to attribute the error to the different sources of uncertainty,
which is useful in performing validation studies. And, since the filter operates on a stochastic
process, the uncertainty of the estimates (based on both the measurement and simulation)
is known. The effectiveness of possible additional measurement locations on reducing the
uncertainties can be quantified.

1.2 Design for verification

During the whole development process, verification of the system was a driving requirement
(it was also part of the assignment). It seemed natural to work according to the so called V
model (figure 1.1), which is based on verification. The first thing that was produced therefore
was an acceptance test, in fact the first example case from chapter 3. The analytic solution
of this case will be used to verify against.

Figure 1.1: V model for software engineering

The overall system design had already been determined by the OpenDA standard. The
coupling had to conform to the interfaces defined in this standard2 and make use of the
OpenFOAM system.

1 This is done by treating the uncertain terms as part of the process state.
2 Not all of these are very well documented unfortunately

VORtech Computing

Technical Report TR12-03 versie 1.1 11

A choice was made to use the black box model from OpenDA, and to implement the coupling
using DataObjects to access the OpenFOAM configuration files. However, since the source of
OpenFOAM is freely available, it was decided to use the native OpenFOAM classes to read
and write these files. However, there was a language barrier to overcome while OpenDA is
mostly written in Java, whereas OpenFOAM is written using object oriented C++.

The resulting architecture design was a three layer system. Layer 1 consists of Java classes as
part of OpenDA, the only part visible to the user. These classes contain native methods, which
form layer 2, or the JNI3 layer. The methods are implemented as global C++ functions, and
perform mostly data translation and memory management. At layer 3, the C++ equivalent
of the Java classes are implemented in object oriented style, directly interfacing with the
OpenFOAM classes. The class instances in layer 1 and 3 correspond in a 1-to-1 way. This three
layer system is illustrated by the process of initializing an OpenFoamDictionary DataObject
in figure 1.2.

Figure 1.2: Sequence diagram for top-level dictionary initialization

By using this direct native interface, it was possible to gain access to essentially all of the
features that are present in OpenFOAM. For example, use has been made of the verbose error
reporting of OpenFOAM, and information on the time and grid can be extracted.

For each class that is part of the implementation, unit tests are defined. These test for
specific functionality and conformance to the interface. Larger tests are defined that make
use of multiple classes, to test their integration. Finally the acceptance test was performed.

3JNI: Java Native Interface

VORtech Computing

12 Technical Report TR12-03 versie 1.1

1.3 Implementation

The one to one correspondence of the classes is implemented using handles, so that each Java
class holds a reference to its native counterpart. An overview of the classes that have been
implemented (classes with a ∗ have a native counterpart):

CsvDataObject DataObject to read csv files produced by the OpenFOAM sample utility

OpenFoamCase* Source and registry for DataObjects from a single case directory

OpenFoamDictionary* DataObject to access dictionary files (and sub-dictionaries)

OpenFoamStochDictionary Extension of dictionary that adds configurable random noise

SpatialCorrelationStochVector Noise generator for the different noise models

MeshedGeometryInfo Class that can hold points from any OpenFOAM grid

ObserverUtils Compatibility for the black box model with database-backed observers

The DataObjects are used by the OpenDA black box model to access items (such as fields,
parameters, observations boundary conditions) from OpenFOAM. A special object is the
OpenFoamCase, which is used to construct all native classes. It lists which DataObjects are
available for a specific case directory, and registers those that have been instantiated. For
every directory in the file system, there can exist only one OpenFoamCase instance. This is
enforced to guarantee uniqueness of all items extracted from a specific OpenFOAM case, which
prevents updates from overwriting each other. The same holds for an OpenFoamDictionary
class. Only one instance corresponding to a specific dictionary or sub-dictionary can exist per
case. This is all invisible to the user, but ensures a proper operation of the system.

The OpenFoamStochDictionary, SpatialCorrelationStochVector and MeshedGeometryInfo op-
erate together to function as a noise model. The OpenFoamStochDictionary reads its configu-
ration and creates a SpatialCorrelationStochVector based upon that. For each ExchangeItem
from the OpenFoamDictionary that has an attached MeshedGeometryInfo, the SpatialCorre-
lationStochVector in turn generates the uncertainties based on the geometry. Two different
methods for generating spatial correlated noise have been implemented: a direct method and
a spectral method. For more information on the noise models, see section 2.3.

The configuration for each of the classes is documented in appendix C.

VORtech Computing

Technical Report TR12-03 versie 1.1 13

Chapter 2

Stochastic modelling

2.1 Terminology

Data assimilation is the incorporation of measurement results into simulation estimates. It is
a procedure aimed at producing optimal estimates of the state of a stochastic process given
observations of that process. The stochastic process is realized by the model simulation. The
observations are measured from a different instance of that process, the reality. Note the
difference between the two concepts of data assimilation and process calibration.

assimilation Finding the most likely state of a stochastic process

calibration Finding the most likely parametrization of a process

In this report, the Ensemble Kalman Filter (EnKF) will be used for data assimilation. For-
mally, this is an optimal sequential filter for estimating the state of linear processes 1. It
consists of a two stage process, a forecast stage and an analysis stage. During the forecast,
the model is propagated in time from state xai to state xfi+1. An optimal kalman gain K is
computed from the uncertainties of the state and the measurements. Then in the analysis
stage, observations from the model forecast are generated using the observation operator H .
These are compared to the the observations from the measurement process yo. The differences
between the two, called innovations, are then projected back onto the state using the previ-
ously computed Kalman gain. It is added to the forecast state xfi+1 to produce the analysis
state xai+1. The next iteration starts from this analysis state. See figure 2.1 for a schematic
of the Kalman filter. The equations for the Kalman Filter and the EnKF are given below.

1 The EnKF is a variant of the Kalman Filter, where an ensemble is used to represent the state covariance.
This makes it fit for larger models, and (by approximation) for quasi-linear models as well.

VORtech Computing

14 Technical Report TR12-03 versie 1.1

Figure 2.1: Schematic diagram of the Kalman filter

variable definition
x model state
η process noise
ε measurement noise
yo,yf observations

(o measured and f predicted)
N ensemble size

variable definition
P covariance of model state
Q covariance of process noise
R covariance of measurement noise
M model time propagation operator
H observation operator
K Kalman gain

Forecast (f)
KF EnKF

xfi+1 = M ix
a
i

P f
i+1 = M iP

a
iM

T
i +Qi

xefj,i+1 = M i(x
ea
j,i) + ηej,i

xfi+1 = 1
N

N∑
j=1

xefj,i+1

P f
i+1 = 1

N−1

N∑
j=1

(xefi+1 − x
f
i+1)(x

ef
i+1 − x

f
i+1)

T

Ki+1 = P f
i+1H

T
i+1(H i+1P

f
i+1H

T
i+1 +Ri+1)

−1

Analysis (a)
KF EnKF

xai+1 = xfi+1 +Ki+1(y
o
i+1 −H i+1x

f
i+1)

P a
i+1 = P f

i −Ki+1H i+1P
f
i+1

xeai+1 = xefi+1 +Ki+1(y
o
i+1 −H i+1x

ef
i+1 − εj,i)

VORtech Computing

Technical Report TR12-03 versie 1.1 15

2.2 Conservation of flow quantities

In many CFD applications, exact conservation of mass, momentum and energy play a crucial
role in the accuracy of simulation results. Finite volume methods, as applied in all OpenFOAM
solvers, are able to exactly satisfy the discrete conservation laws, when applied correctly.

It is therefore desirable that the Kalman Filter will preserve this important model property.
A conserved quantity q of the model will be called an invariant, if its change depends solely
upon the forcings. Normalized linear invariants q can be written as an inner product with
the model state (see equation 2.1).

qi ≡ 〈qi,xi〉 (2.1)

〈qi, qi〉 = c (2.2)

Most conserved properties will correspond to a constant qi. For example, if the state xi
consists of average u-velocities in each grid cell, the global u-momentum can be obtained
when qi equals the density (and the inner product is weighted by the grid cell volume in the
finite dimensional case. Global mass, global momentum and for instance circulation are all
linear quantities that can be represented this way.

Energy quantities can usually be represented as qi = Gxi, but they are not linear in the
solution. Therefore, conservation of energy is excluded from the following analysis. A more
detailed analysis may reveal if, and under which conditions energy may be preserved. However,
since energy is nonlinear, it is present both in the state mean and in the state covariance.
Therefore, estimates of energy quantities should deal with the state mean and covariance
accordingly.

2.2.1 Conditions on the filter

It can be shown that all linear invariants of the model are also invariants of the model combined
with the Kalman filter, provided that they have zero variance. This holds in general for the
KF, as well as for the EnKF.

The variance of a linear quantity q in the solution x is

Var(q) = E
[(
〈q,x〉 − 〈q,E (x)〉

)2]
= E

[
qT (x− E (x))(x− E (x))Tq

]
= qTPq (2.3)

Given that qTPq = 0 and P is symmetric positive semi-definite, q is a minimizer of the
Rayleigh quotient and therefore an eigenvector of P corresponding to the eigenvalue 0. Con-
sequently, the Kalman gain K will be orthogonal to q column-wise (see equation 2.4). There-

VORtech Computing

16 Technical Report TR12-03 versie 1.1

fore, the quantity q will not be changed between the forecast and analysis states (2.5).

〈q,K〉 =
〈
q,PHT (HPHT +R)−1

〉
=
〈
HPq, (HPHT +R)−1

〉
= 0 (2.4)

〈q,xa〉 = 〈q,xf〉+ 〈q,K(y −Hxf)〉
= 〈q,xf〉 (2.5)

2.2.2 Conditions on the stochastic model

There are three uncertainties that influence the variance of the conserved quantities.

• The uncertainty of the initial condition δx0

• The uncertainty of the model time propagation operator δM

• The uncertainty of the forcings δu

In the context of the ensemble EKF, conditions on these uncertainties reduce to conditions
on the individual ensemble members. If the model is discretely conservative, an invariant
will only change due to the forcings (source terms, boundary conditions etc). Therefore, to
render the variance Var(q) of a conserved quantity zero, it is sufficient to let q be constant
over the distribution of the initial condition 〈q, δx0〉 = 0 and to ensure that the forcing of
each ensemble member changes the conserved quantity by the same amount.

2.3 Generating random fields

Producing random numbers can be as simple as rolling a die. Producing random samples
from a prescribed distribution can be more involved, but methods exist to generate random
scalars from any distribution 2.

Then, generating a random scalar or vector field in concept could be as simple as rolling a die
at each point. However, producing a random field from a specific distribution 3 or prescribed
spatial covariance is more challenging. Here we restrict ourselves to pointwise joint normally
distributed fields (which are determined by their spatial covariance). To generate a random
field on a given (finite volume) mesh with a prescribed spatial covariance, several methods
have been considered.

2Some of these methods have been implemented in OpenDA
3A probability distribution over fields can be seen as a functional P : {Rn → Km} → R+

VORtech Computing

Technical Report TR12-03 versie 1.1 17

• Direct covariance transformation

• Spectral decomposition

• Coarse grid interpolation

The first two methods have been implemented for fields where the covariance only depends
on the distance between two points (homogeneous random fields). These methods however
are not limited to that case. The third method is more general than the second, but requires
a coarse grid. This method could be implemented by using the OpenFOAM multigrid func-
tionality, together with linear interpolation or radial basis functions. This was not finished
due to time restrictions.

The direct covariance transformation method requires an explicit covariance matrix between
all points of the mesh. Therefore, the distance between each pair of points is calculated. A
correlation function is used to compute the correlation coefficients from these distances. A
possible correlation function is the Gaussian in equation 2.6. Together with the pointwise
standard deviation this defines the covariance matrix.

ρ = exp
(
−‖dx‖2

/
δ2
)

(2.6)

A square root matrix L of the covariance matrix is computed (for instance by Cholesky decom-
position). Then each time a realization of the random field is required, a vector of independent
standard normally distributed scalars is generated, as many as the number of grid cells. This
vector is transformed by the square root matrix into the required field corresponding to the
covariance (equation 2.7).

x ∼ N(0, I)

Cov(Lx, Lx) = E
[
(Lx)(Lx)T

]
= E

[
L(xxT)LT

]
= LLT (2.7)

The spectral decomposition method is based on a decomposition of the field in spectral com-
ponents. This is implemented on a (n-dimensional) square domain [0, 1]n, where the spectrum
is a multidimensional Fourier series (equation 2.10). Here the ⊗ symbol signifies a cartesian
product in the sequence space, applied once for every dimension > 1.

F : x 7→ (cos(ikx))0≤i<N ∪ (sin(ikx))1≤i<N (2.8)

F : x 7→
∏
F(x1)⊗ . . .⊗F(xn) (2.9)

η(x) =
∑
fm∈F

cmfm(x) (2.10)

This has two advantages: the computational costs can be greatly reduced by reducing the
number of variables, and the need to decompose the entire covariance matrix is eliminated.

VORtech Computing

18 Technical Report TR12-03 versie 1.1

The fourier coefficients cm for a limited N can be generated according to any joint normal
distribution. The spatial covariance of the field η(x) will depend on this distribution. Here a
simple distribution (2.11) having independent coefficients is chosen.

cm ∼ N(0, s2m) (2.11)

σ2 = 2

(2N−1)n∑
m=0

|sm|2

The resulting spatial correlation again depends only on distance (equation 2.12). Note this
only holds when the cm are independent and the variances of the sine and cosine parts are
equal for the same wave number. Also note that this correlation function is periodic with
period 2π

k
.

ρ =
1

σ2

(2N−1)n∑
m=0

2 |sm|2 cos(kmx) (2.12)

Figure 2.2: Correlation functions for the direct
method (red) and the spectral method (blue)

The disadvantage of the spectral method, is
that the covariance functions can only be rep-
resented approximately with a limited num-
ber of coefficients. Also boundary condi-
tions can only be satisfied if the domain is
suitable, and the periodicity must be taken
into consideration. A comparison between a
correlation function from the direct method,
and the corresponding correlation function
according to equation 2.12 is given in figure
2.2. A limited number of N = 6 modes have
been used to capture 95% of the energy in
the original correlation function.

In the current implementation of the spec-
tral method, it is unfortunately not possi-
ble yet to configure all coefficients indepen-
dently. Rather, they are constant up to a
limited frequency and scaled to obtain a specified pointwise standard deviation. This can be
extended by using a fourier transform of a specified correlation function such as 2.6.

VORtech Computing

Technical Report TR12-03 versie 1.1 19

Chapter 3

Users guide

This chapter is intended as a tutorial and reference for anyone intending to perform data-
assimilation with OpenFOAM and OpenDA. Its goal is primarily instructional, references to
theoretical and technical sections will be given where necessary. First, the central concepts of
OpenDA are introduced for OpenFOAM users in section 3.1. These concepts will be applied
to two reference problems relevant for aerodynamics, using two tutorials. Section 3.2 presents
a 1D advection problem and section 3.3 a 2D incompressible lid driven cavity flow.

3.1 Concepts in OpenDA

Data assimilation is the process of producing estimates of the state of a model based on
measurements. To do so any data assimilation system obviously requires a model capable of
predicting this state, a set of measurement data, an algorithm to put things together, and a
way of presenting its estimates. These are all separate components in OpenDA that interact
with each other. The core components that are absolutely necessary for the system to run,
are:

• A (stochastic) observer for dealing with the measurements

• A (stochastic) model to provide predictions

• An algorithm to drive the model and the observer and compute estimates

These components can be chosen using configuration files or via the user interface. For
example, multiple algorithms exist to choose from, such as an Ensemble Kalman filter or
a Particle filter. The algorithm is the most important component, since it tells the other
components what to do. In practice, this means that the OpenDA application will run the
algorithm, which will run the model in turn. The model in this case will be an OpenFOAM
solver, which is driven by OpenDA writing the input and reading the output files. The model

VORtech Computing

20 Technical Report TR12-03 versie 1.1

in OpenDA that is responsible for this is called the black box model, since it requires no
knowledge of the internal workings of the actual model.

Figure 3.1: Black box model concept

Only the input and output formats need to
be supported. These are parsed and con-
verted by the black box model, making the
contained items availeble to OpenDA. These
items are called exchange items. In this case,
OpenDA actually does know more about the
internal workings of OpenFOAM, and this
knowledge is in fact used to make geometry
data available for the uncertainty models.

Furthermore, other components can be used
and configured in an OpenDA run, including:

• Noise models for creating realizations
of uncertainties

• Parallellization models to concurrently evaluate multiple model instances

• Result writers to present the output of the algorithm

Some of these components will be used in the tutorials as well.

3.2 1D periodic advection tutorial

The process of data assimilation will be illustrated by this most simple problem. We know
that uniform flow with speed u0 = 1 exists on a periodic domain x ∈ [0, 1], and that a quantity
φ is convected with this flow. The domain can be seen as a circular tube, so everything that
exits at x = 1 enters at x = 0. This is our model, as represented by equations 3.2.

φt − u0φx = 0 (3.1)

φ(0, t) = φ(1, t) (3.2)

This system has no unique solution, since the initial condition is unknown. We do however
have observations at certaint points xobsn , let’s say a total of Nobs evenly spaced points in the
domain. We will assimilate these observations to estimate the solution φ(x, t).

Before we can make an estimate of this process, we must model the uncertainties. Any
uncertainty will be approximated by a random variable (scalar or vector), with an assumed
distribution (called the prior). We can assume a prior for the initial condition, or a prior
for an error source term in the equation, or both. Since the initial condition is unknown, it

VORtech Computing

Technical Report TR12-03 versie 1.1 21

would be natural to model it as an uncertainty. However, convergence will then depend on the
actual initial condition being within certain bounds, which we can not guarantee. Therefore
we will model an error source term in the equation, η(x, t). If this term is not too large, the
algorithm will converge. The arbitrary initial condition is chosen as zero (since stochastic
initialization is not yet supported at this time).

φt − u0φx = η(x, t)

φ(x, 0) = 0

φ(0, t) = φ(1, t) (3.3)

3.2.1 Algorithm setup

Figure 3.2: Example solution

This is where we select the main compo-
nents of our data assimilation run, i.e. the
algorithm, model and observer. This is
done in the main configuration file, located
in the tutorial directory example1d, named
example1d.oda. All of the OpenDA config-
uration files are in XML format. They can
be edited using any regular text editor, but
use of a validating xml editor (such as XML
copy editor or jEdit) is recommended, which
is helpful in displaying valid configuration
choices 1.

The content of the main configuration re-
flects the directory structure of the tutorial,
as we will be using a separate directory for
each component. This structure, containing
the algorithm, model and observer direc-
tories, is shown in figure 3.3 (where the top directory represents the OpenDA application
component). The configuration for each sub-component is located in its own directory. When
there is a dependency, a configuration file referring to another file is indicated by a dashed
arrow. To set up this case, we will follow these dashed lines.

The first component that we depend on, is the algorithm. Since this is data assimilation on
a small linear problem, the Kalman Filter is the right choice for an algorithm. We will use
the Ensemble Kalman filter (EnKF). To select this algorithm, its configuration is given in
example1d.oda as follows.

3 <algorithm className="org.openda.algorithms.kalmanFilter.EnKF">

1 When using a validating XML editor, add the xml schema attributes (xsi:schemaLocation) to the first tag
of the file. This will enable validation as well as autocompletion features. Use the schema locations specified
in appendix B.

http://xml-copy-editor.sourceforge.net/
http://xml-copy-editor.sourceforge.net/
http://plugins.jedit.org/plugins/?XML

VORtech Computing

22 Technical Report TR12-03 versie 1.1

4 <workingDir>algorithm</workingDir>

5 <configFile>enkf.xml</configFile>

6 </algorithm>

Figure 3.3: Directory structure for the configuration of OpenDA

The configuration file that is referred to here, algorithm/enkf.xml then specifies the algo-
rithm options. Each time there are observations available, an analysis step will be done. We
will simulate using an ensemble of 20 model instances.

1 <?xml version="1.0" encoding="UTF-8"?>

2 <EnkfConfig>

3 <analysisTimes type="fromObservationTimes"/>

4 <ensembleSize>20</ensembleSize>

5 <ensembleModel stochParameter="false" stochForcing="true" stochInit="false"/>

6 </EnkfConfig>

Now we need an observer to process the measurement data. The (generated) measurement
data for this case has been stored in a database. OpenDA includes a database-backed observer
component called the Costa observer.

7 <stochObserver className="org.openda.costa.CtaStochObserver">

8 <workingDir>observer</workingDir>

9 <configFile>measurements.db</configFile>

10 </stochObserver>

This database contains exact observations generated from a reference model satisfying the
original deterministic equations (3.2). The initial condition for the reference model is φ =
sinc(ax− 1

2
), with a chosen such to satisfy C2 continuity at the boundary. 2

2 The reference solution can be obtained using the matlab scripts init condition.m and exact solution.m
in the resources/1d directory.

VORtech Computing

Technical Report TR12-03 versie 1.1 23

The configuration also depends on the model that we choose. The .oda file that the model
component is provided by the black box model wrapper. This component is set up using 3
additional config files in the model directory, which are explained in section 3.2.2.

11 <stochModelFactory className="org.openda.blackbox.wrapper.BBStochModelFactory">

12 <workingDirectory>model</workingDirectory>

13 <configFile>stochModel.xml</configFile>

14 </stochModelFactory>

The results of the run will be written in Matlab format in the results directory.

3.2.2 Model setup

Now we need an OpenFOAM model for this case. We will use the ‘ScalarTransportFoam’
solver, which solves the advection-diffusion equation (3.4).

∂T

∂t
+∇(u · T) = ∇(ν∇T) (3.4)

The OpenFOAM tutorial case ‘pitzDaily’ will serve as a template to start our modelling
from. A few adaptations have been made to model our case in this solver (see the example
files). A 1D mesh has been defined in blockMeshDict. Viscosity has been set to ν = 0
in transportProperties, and the zero initial conditions and periodic boundary conditions
have been specified in the T file under the 0 directory. Most importantly, the sample utility of
OpenFOAM has been configured to extract measurements from this case, using the dictionary
sampleDict in the system directory. These measurements will be written by the sample
utility, and read by OpenDA.

This modified OpenFOAM tutorial is found under the model directory, in a directory named
template. It will be copied once for each ensemble member. The remaining configuration is
contained in 3 files in the model directory, see figure 3.4. The stochModel.xml file specifies
which exchange items from the model are part of the state, observations or parameters. In
this case, the state is T (x, t) (called Tfield), and the observations are T obs

k (called Tobs).
These exchange items are extracted from the model by so called DataObjects or IoObjects.
For each item, the name of the IoObject to use is specified in the model.xml file.

<exchangeItems>

<vector id="startTime" ioObjectId="control"

elementId="startTime" />

<vector id="endTime" ioObjectId="control"

elementId="endTime" />

<vector id="Tobs" ioObjectId="sample"

elementId="T" />

<vector id="Tfield" ioObjectId="Tdict"

elementId="internalField" />

</exchangeItems>

http://openfoamwiki.net/index.php/ScalarTransportFoam

VORtech Computing

24 Technical Report TR12-03 versie 1.1

Figure 3.4: Directory structure for the model configuration of the 1D example

There are two special exchange items, startTime and endTime that allow OpenDA to control
the time for OpenFOAM. When OpenDA performs a time step, these items are assigned a
value. The time formatting can be controlled by the <timeFormat> tag, which must corre-
spond to the OpenFOAM timeFormat and timePrecision options.3

3.2.3 Interaction and I/O

The IoObjects are configured in the wrapper.xml file. This case uses 3 IoObjects, called
control, sample and Tdict. Each of them is used to access one of the files in the OpenFOAM
case. In figure 3.4 this is represented by the dashed arrows pointing from the OpenDA
configuration to the OpenFOAM configuration.

The control dictionary requires little setup, only the file name is required. The OpenFoamDictionary
class reads and writes all files in the OpenFOAM dictionary format4

<ioObject className="org.openda.blackbox.io.OpenFoamDictionary">

<file>system/controlDict</file>

<id>control</id>

</ioObject>

3 See section C.1 for time formatting.
4 See section C.2 about the OpenFoamDictionary class

VORtech Computing

Technical Report TR12-03 versie 1.1 25

The observations generated by the sample utility are in plain csv format, and therefore they
are read by the CsvDataObject class. This class has more arguments, to specify which
columns hold geometry, time and values for the observations.5

<ioObject className="org.openda.blackbox.io.CsvDataObject">

<file>sets/%currentTime%/obs_T.csv</file>

<arg>geometry=x</arg>

<arg>geometry=y</arg>

<arg>geometry=z</arg>

<id>sample</id>

</ioObject>

The state can be found in an OpenFOAM dictionary in the current time directory. The
current time can be used as an alias in the file name, as in this example. However, since
uncertainty is added to the state, this object has more parameters. Grid-dependent noise is
generated, using a Fourier expansion. The wave number up to which the expansion will run
is given here.6 Since this noise model can generate noise on a domain of [0, 1]d, and we need a
1-dimensional noise term, we choose d = 1 by transforming the 3D grid points to a 1D space
using the 1-by-3 transform matrix given here.

<ioObject className="org.openda.blackbox.io.OpenFoamStochDictionary">

<file>%currentTime%/T</file>

<id>Tdict</id>

<arg>std=0.05</arg>

<arg>waveNumber=4</arg>

<arg>transform=[1,0,0]</arg>

</ioObject>

Lastly the actions to run the model need to be specified. These are divided into 4 types:

• Initialize (run blockMesh, generate initial conditions)

• Compute (perform a time step using the solver)

• Additional (run the sample utility)

• Finalize

All OpenFOAM executables are run via shell scripts, to set up the OpenFOAM environment
settings. Making the OpenFOAM environment global is discouraged, since it interferes with
other libraries used by OpenDA. All that is required to run OpenFOAM with OpenDA is
making an ~/.OpenFOAM directory in the user’s home, containing a link to the ‘etc’ directory
within the OpenFOAM installation, e.g. ~/.OpenFOAM/2.1.0 links to /opt/openfoam-2.1.0/etc.
Individual solvers may require setting environment variables within the scripts as well.

5 See section C.3 about the CsvDataObject class
6 See section C.4 about the OpenFoamStochDictionary class

VORtech Computing

26 Technical Report TR12-03 versie 1.1

3.2.4 Running the algorithm

Now start the run by opening a command prompt in the example1d directory and enter-
ing ‘oda_run.sh example1d.oda’. This will start the ensemble run and place the out-
put in the results directory. To postprocess the results in matlab or octave, use the
load_results.m script from the resources/1d directory. The full ensemble results are in
the variable ensemble, with dimensions (Ncells, Ntimesteps, Nensemble).

• Plot the full ensemble and the ensemble mean at the first few time steps.

• Plot the exact solution alongside (using exact_solution.m).

• To what value does the sample standard deviation converge (pointwise average)?

• To what value does the standard deviation centered around the exact solution converge?

The measurement absolute standard error was 0.05 and the standard error of the mod-
elled state uncertainty was also 0.05. The results converge as expected with an uncer-
tainty of 0.05

√
2. The measurement uncertainty can be changed by modifying the database

measurements.db using sqlite. The modelled state uncertainty can be changed in the wrapper.xml
configuration.

• Perform a run with a different value for the measurement uncertainty or state uncer-
tainty and see if the solution behaves as expected.

• Perform a run with a different ensemble size and note the effects.

Other variables that can be inspected are the observations - variable obs (Nobs, Ntimesteps) -
and the Kalman gain for each observation - variable kg (Ncells, Ntimesteps, Nobs).

3.3 2D lid driven cavity tutorial

In this tutorial a more involved example based on the OpenFOAM lid driven cavity tutorial
will be under investigation. We have a database with observations of the vertical velocity
along the centerline which we will use for data assimilation.

We will solve the problem of estimating the state of the cavity and its boundary condition at
the top based on the measured data. The deterministic model for this case will be the steady
state incompressible Navier Stokes equations with boundary conditions as given by 3.5. They
are solved using the icoFoam solver, by time stepping towards the steady state solution.

∇ · u = 0
∇p = ∇ ·

(
−u⊗ u+ 1

Re

(
∇u+∇uT

)) } on Ω (3.5)

n · ∇p = 0
u = 0

}
on ∂Ωleft,bottom,right (3.6)

VORtech Computing

Technical Report TR12-03 versie 1.1 27

The boundary condition at the top is unknown, therefore we will introduce the uncertainty
model 3.7. This is an AR(1) process that models the boundary condition as a random de-
parture from the previous estimate, with a certain spatial correlation. As an initial condition
the velocity of the moving wall is assumed identically zero, so that the cavity will be at rest.
The actual state of the moving wall will follow from assimilation of the measurement data.

n · ∇p = 0
u0 = 0
t · uj+1 = αt · uj + η(x)

 on ∂Ωtop (3.7)

3.3.1 Algorithm setup

uw

vobs

Figure 3.5: Cavity flow at Re = 1000

In OpenDA, as with OpenFOAM, it is eas-
iest to start from an existing case. There-
fore copy everything from the 1D tuto-
rial to a new directory called example2d.
Since the same components are used, the
example1d.oda file remains unchanged (re-
name it to example2d.oda). The algo-
rithm configuration (EnKF) also remains un-
changed, however some modifications to the
model and observer components will be nec-
essary. We start by configuring the observer
for the new data to be assimilated. These
are samples from the calculation of a simi-
lar case, where the velocity of the top wall
was prescribed. The recorded vertical veloc-
ities at the centerline of the cavity are stored
in a database (located in the resources/2d

directory).

• Copy the database measurements.db

to the observer directory.

• Extract the observation locations from the database using
sqlite3 -separator ’ ’ measurements.db \

’select "(",xpos,0.05,0.005,")" from stations’

3.3.2 Model setup

The OpenFOAM model for this example will be based upon the cavity tutorial from Open-
FOAM. The whole case directory can be copied to the model directory. A few adaptations
have to be made:

VORtech Computing

28 Technical Report TR12-03 versie 1.1

• Let the kinematic viscosity ν = 1 · 10−4 so that Re = 1000.

• Set the time step to dt = 0.005 seconds and the time precision to 3 decimals (fixed).

• Rename the 0 directory to 0.000 to make the time names consistent.

• Change the initial velocity of the moving wall to (0, 0, 0).

• Copy the sampleDict dictionary from the 1D example (template directory)

• Plug in the new observation locations in the sampleDict.

Now some configuration changes in the OpenDA black box model are required. We change
the solver from scalarTransportFoam to icoFoam by changing the solver alias in model.xml.
The template directory should also be changed here from template to cavity. The state
and observation variables have changed as well. The state formally consists of the velocity
and pressure fields, and the uncertainty on the boundary conditions (3.8). The observations
are once again generated by the sample utility, but now it is the vertical velocity component
that we are interested in.

state =

u(x, y)
v(x, y)
p(x, y)

uw(x) + η(x)

 (3.8)

This translates into the exchange items for the state (internalUfield, internalpField and
boundaryUField), and for the observations (Uobs) respectively. These are configured in the
model.xml file.

<vector id="Uobs" ioObjectId="sample"

elementId="U_1" />

<vector id="internalUField" ioObjectId="UField"

elementId="internalField" />

<vector id="boundaryUField" ioObjectId="boundaryUField"

elementId="value" />

<vector id="internalpField" ioObjectId="pField"

elementId="internalField" />

3.3.3 Interaction and I/O

Finally the necessary IoObjects are configured in the wrapper.xml file. A total of 5 IoOb-
jects are required (control, sample, UField, pField, boundaryUfield). The sample object
requires only a change of filename, since we are observing velocity U instead of the scalar
T (use obs_U.csv instead of obs_T.csv). The UField and pField are straightforward in-
stances of the OpenFoamDictionary class (use filenames %currentTime%/U and %currentTime%/p,
respectively).

VORtech Computing

Technical Report TR12-03 versie 1.1 29

The boundaryUField however, needs to access the boundary condition for the velocity field.
OpenFoam expects this in a nested sub-dictionary in the velocity dictionary file, as can be
seen in the fragment below.

boundaryField

{

movingWall

{

type fixedValue;

value ...

A sub-dictionary is treated by OpenDA in the same way as a regular file, only the title should
be given as an additional argument to the OpenFoamDictionary class, right after the file
name. In this case, the required value is two levels deep, so the two added arguments are
‘boundaryField’, then ‘movingWall’. See the extract from wrapper.xml below. The uncer-
tainty model parameters are different, because the noise component η(x) is now generated
using a direct noise model, where the spatial correlation is prescribed. The argument is a
characteristic correlation length. The component of the vector field, to which the noise is
added, is given by the components matrix. When multiple independent noise components
are desired, add multiple row vectors with different directions in this matrix, separated by a
semicolon (;).

<ioObject className="org.openda.blackbox.io.OpenFoamStochDictionary">

<file>%currentTime%/U</file>

<id>boundaryUField</id>

<arg>boundaryField</arg>

<arg>movingWall</arg>

<arg>std=0.05</arg>

<arg>length=0.02</arg>

<arg>components=[1,0,0]</arg>

</ioObject>

3.3.4 Running the algorithm

Start the run by executing ‘oda_run.sh example2d.oda’ from the example2d directory. This
could take some time, depending on your processor and disk performance. The size of the
results file will be quite large. When ready, start postprocessing with matlab or octave,
using the load_results.m script and other scripts from the resources/2d directory. It
is advisable to save the results in binary format (type save results.dat) to save space
and time for later postprocessing. The full ensemble results are in the variable ensemble

(Ncells, Ntimesteps, Nensemble). The grid for this case is in the variables X,Y (2N, 2N).

• Extract the fields from the ensemble state at time level i by typing
[U,V,W,p,Ub,Vb,Wb] = getstate(ensemble(:,i,:) N);

• Plot these fields using the imagesc command.

VORtech Computing

30 Technical Report TR12-03 versie 1.1

• Plot some measure of the total state uncertainty over time.

The results converge, and we can deduce that the most likely flow state in the reference case
(from which the measurements originate), was the cavity flow resulting from a left-moving
lid.

Figure 3.6: Vorticity of the expected velocity, and its pointwise standard deviation

VORtech Computing

Technical Report TR12-03 versie 1.1 31

Chapter 4

Conclusions and Recommendations

OpenDA provides data assimilation concepts and procedures to OpenFOAM. These are read-
ily usable with any OpenFOAM solver, applicable to any field variable, parameter or ob-
servation. The functionality and performance of the system has been proven using two test
cases. A native interface to the OpenFOAM classes was created to access OpenFOAM func-
tionality. Grid geometry information from OpenFOAM is available to OpenDA for use in
noise modelling and data interpretation. A direct and a spectral uncertainty model have been
implemented for arbitrary unstructured meshes. Small time scales and large state sizes are
supported. Detailed error reporting is incorporated.

This functionality could be extended to include

• Better configurability of the spectral noise model (e.g. arbitrary correlation functions).

• Noise models with arbitrary constraints (necessary for mass conserving boundary con-
ditions).

• Support for correlation between different field quantities and correlation in time.

• Support for multigrid facilities from OpenFOAM.

• Model calibration of time-dependent models.

Furthermore, existing functionality can be tested by investigation of more advanced model
problems. Questions on the observability of aerodynamic processes can be answered. The
effects of ensemble size or different data assimilation algorithms can be examined.

VORtech Computing

32 Technical Report TR12-03 versie 1.1

VORtech Computing

Technical Report TR12-03 versie 1.1 33

Appendix A

Assignment

Background

Experimental flow data, acquired via particle image velocimetry (PIV), are often incomplete,
in the sense that measurements in some locations are unreliable or unavailable. As the
circumstances causing the loss of data cannot always be taken away, the missing observations
require treatment. To estimate the most likely values for these observations, data assimilation
and flow modelling procedures need to be combined.

Assignment

To be able to solve this problem in a generic way, existing solutions are to be put together:
OpenDA, a framework for data assimilation, and OpenFOAM, a CFD toolbox. The coupling
between these software packages needs to be implemented at the source level. The intended
use of this work is data filling in PIV results, by applying ensemble Kalman filtering and
Navier-Stokes modelling to regions with missing observations.

To validate the solution, a series of test cases and procedures needs to be defined, implemented,
and evaluated. Possible test cases range from a simple 1-d convection-diffusion problem to
2-d Navier-Stokes vortex transport in uniform flow, with appropriate stochastically generated
data for the boundary conditions. Using these test-cases, the solution can be verified by
comparing the results to a known solution.

Furthermore, for the cases considered, the tractablity of applying various flow models and data
assimilation methods can be evaluated, together with the accuracy of the resulting estimates.
User documentation should be provided, together with any resultant recommendations.

VORtech Computing

34 Technical Report TR12-03 versie 1.1

Project goals

The purpose of this project is to provide a coupling between OpenDA and OpenFOAM, and
to demonstrate the results on a test case.

Work breakdown

Short literature study on data assimilation and Kalman filtering 40 hours
Install and configure OpenDA and OpenFOAM 25 hours
Assemble 1-d and 2-d steady/unsteady test cases in OpenFOAM 40 hours
Implement coupling between OpenDA and OpenFOAM 100 hours
Generate statistical test setup from a known solution 20 hours
Verify the solution using the test cases 25 hours
Asses the influence of process parameters on reliability of estimates 24 hours
Provide user documentation for using OpenFOAM with OpenDA 40 hours
Evaluate (if time allows) performance of different combinations of methods 40 hours
Report results and recommendations 60 hours

Total time based on estimate: 414 hours
Total time based on 40hr/wk: 480 hours
Total time based on 18 ECTS: 504 hours

VORtech Computing

Technical Report TR12-03 versie 1.1 35

Appendix B

Configuration schemas

example1d.oda, example2d.oda

1 <?xml version="1.0" encoding="UTF-8"?>

2 <openDaApplication xmlns="http://www.openda.org"

3 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

4 xsi:schemaLocation="http://www.openda.org

5 http://schemas.openda.org/openDaApplication.xsd">

enkf.xml

1 <?xml version="1.0" encoding="UTF-8"?>

2 <EnkfConfig xmlns="http://www.openda.org"

3 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

4 xsi:schemaLocation="http://www.openda.org

5 http://schemas.openda.org/algorithm/enkf.xsd">

stochModel.xml

1 <?xml version="1.0" encoding="UTF-8"?>

2 <blackBoxStochModel xmlns="http://www.openda.org"

3 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

4 xsi:schemaLocation="http://www.openda.org

5 http://schemas.openda.org/blackBoxStochModelConfig.xsd">

model.xml

1 <?xml version="1.0" encoding="UTF-8"?>

2 <blackBoxModelConfig xmlns="http://www.openda.org"

3 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

4 xsi:schemaLocation="http://www.openda.org

5 http://schemas.openda.org/blackBoxModelConfig.xsd">

wrapper.xml

VORtech Computing

36 Technical Report TR12-03 versie 1.1

1 <?xml version="1.0" encoding="UTF-8"?>

2 <blackBoxWrapperConfig xmlns="http://www.openda.org"

3 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

4 xsi:schemaLocation="http://www.openda.org

5 http://schemas.openda.org/blackBoxWrapperConfig.xsd">

VORtech Computing

Technical Report TR12-03 versie 1.1 37

Appendix C

Options reference

This appendix contains an overview of the configuration options that come with the OpenFOAM-
OpenDA coupling. On how to use these options, see the tutorial sections 3.2 and 3.3.

C.1 Time formatting options

configuration files: stochModel.xml, system/controlDict

Both OpenFOAM and OpenDA are aware of the model time, i.e. the time that passes in
the simulated process. Therefore, they should interpret time values wherever they occur in
the same way. Unfortunately the default conventions on time formatting in OpenFOAM and
OpenDA are not compatible (OpenFOAM uses a decimal or scientific notation in seconds,
OpenDA uses a modified julian date or a date-time string). However, the time format used
by the OpenDA black box model (for exchange items, alias values etc) can be changed. Use
the <timeFormat> option in the black box configuration file stochModel.xml. The syntax is
given in table C.1

Option format possible value effect

<timeFormat>string
</timeFormat>

%x.yf

Time values are interpreted as seconds
in fixed decimal representation, with x
significand places before and y after the
decimal point.

yyyy-MM-dd’T’HH:mm:ss
The default date-time format. For the
specification, see SimpleDateFormat.

Table C.1: Option syntax for time formatting

In OpenFOAM, make sure to select the timeFormat fixed option (in the controlDict). Then
specify for the timePrecision option the same number of significand places after the decimal
sign as in OpenDA.

VORtech Computing

38 Technical Report TR12-03 versie 1.1

C.2 OpenFoamDictionary options

configuration file: wrapper.xml class: org.openda.blackbox.io.OpenFoamDictionary

To set up an IoObject to access an OpenFOAM dictionary, use the OpenFoamDictionary
class. Its options are specified in table C.2 Note: a sub-dictionary is a part of an OpenFOAM
dictionary file within curly brackets ({}), containing a group of entries.

Option format value effect
<id>string</id> Specify a name for referring to this IoObject.

<file>path</file>
Specify the relative path with respect to the case
directory of the OpenFOAM dictionary file to ac-
cess.

<arg>entry</arg> (optional)

Specify the entry name of a sub-dictionary within
the dictionary file. This works recursively: spec-
ify additional arguments to open nested sub-
dictionaries.

Table C.2: Option syntax for OpenFoamDictionary IoObject

C.3 CsvDataObject options

configuration file: wrapper.xml class: org.openda.blackbox.io.CsvDataObject

The CsvDataObject is used to extract data from Csv files. It converts (groups of) columns to
exchange items, which can be used as a (read-only) part of the state or observations. Grouped
columns are stored in row-major order. Geometry or time info will be added to the exchange
items, if specified. The options to this IoObject are given in table C.3.

Option format value effect
<id>string</id> Specify a name for referring to this IoObject.

<file>path</file>
Specify the relative path with respect to the case
directory of the csv file to access.

<arg>geometry=name</arg> (optional)
Specify the column name of a column containing
geometry (coordinate values). Groups geometry
columns when used multiple times.

<arg>time=name</arg> (optional)
Specify the column name of a column containing
time values.

<arg>value=name</arg> (optional)
Specify the column name of a column containing
(observed) values. Groups value columns when
used multiple times.

Table C.3: Option syntax for CsvDataObject IoObject

VORtech Computing

Technical Report TR12-03 versie 1.1 39

C.4 Noise model options

configuration file: wrapper.xml class: org.openda.blackbox.io.OpenFoamStochDictionary

These are the options to the noise model. They must at this time be given as additional
options to the OpenFOAMStochDictionary IoObject, following the OpenFOAMDictionary
options as described in C.2. This is because the OpenDA black box model does not support
autonomous noise models yet. There are two noise models available this way, a direct model
and a spectral model (see section 2.3).

Note that the noise can be generated on a transformed domain using a transformation matrix
M (from the model domain to the noise domain). This has two advantages:

• The dimensionality of the noise domain can be reduced.

• Scaling and directionality changes can be made easily.

The first property can lower the computational costs of noise generation drastically. It is
achieved by using a n-by-m transformation matrix, where n is the dimension of the noise
domain and m is the dimension of the model or physical domain. The second property is
especially useful for the spectral model, which generates noise on a fixed domain [0, 1]n.

Option format value effect

<arg>std=real</arg>
Specify the pointwise standard deviation for
the stochastic component that is added to
this field.

<arg>length=real</arg>
Select the direct noise model. Specify the
correlation length δ to define the spatial cor-
relation coefficient ρ = exp (−‖dx‖2/δ2)

<arg>waveNumber=integer</arg>

Select the spectral noise model. Specify the
cutoff wave number used in the Fourier ex-
pansion of the stochastic component. This is
uniform in all directions.

<arg>transform=matrix</arg> (optional)
Specify the transformation matrix M from
the model domain to the noise domain.

<arg>components=matrix</arg> (optional)

Specify how the generated noise fields should
be mapped to vector components. For each
row of this matrix, an independent stochastic
field is generated and mapped to the vector
component corresponding to that row.

<arg>mesh=name</arg> (optional)
Specify the name of the mesh used for the
geometry. This can be the name of a patch
for boundary fields.

Table C.4: Option syntax for the noise model

VORtech Computing

40 Technical Report TR12-03 versie 1.1

Data assimilation for OpenFOAM®

O
pe

nD
A

ap
pl

ica
tio

ns

OpenFOAM®
OpenFOAM®: OpenFOAM® (www.openfoam.com) is a very popular open source CFD (Computational Fluid Dy-
namics) package. The fact that OpenFOAM® is free (as opposed to other CFD packages that are usually rather
expensive) certainly helps to explain its popularity. But the openness is probably just as important for users. By
accessing the source code, they can inspect the methods that have been implemented and extend or improve
them according to their needs. This has made it the platform of choice for much of the CFD research that is go-
ing on today.

Experiment: Kalman filtering for OpenFOAM®
OpenFOAM® does not yet have a standard facility for data assimilation and calibration. OpenDA might be a
good candidate to fill this gap. If an effective combination can be made of OpenDA and OpenFOAM®, it will
open up a load of useful functionality for OpenFOAM® users. The OpenDA Association decided to develop a
link between OpenFOAM® and OpenDA in close cooperation with the aerodynamics group from the Aerospace
Engineering Faculty of Delft University of Technology.

Open source software environment for data assimilation

Figure 1: Flow field around an airfoil from a wind turbine, computed
with OpenFOAM®. Courtesy of Richard Dwight, aerodynamics group
from the Aerospace Engineering Faculty of Delft University of Technol-
ogy.

The connection was done in the simplest way: by using
the OpenDA black box wrapper. In this case, OpenDA just
reads output files from an OpenFOAM® run and produces
modified input files for the next OpenFOAM® timesteps.
Although this may seem inefficient, the actual overhead
from reading and writing files was only 10% of the total
computation time for a significant case.

The OpenDA noise model was extended such that it can
now define noise models based on the OpenFOAM® mesh
that is used in the computation. Several useful noise
models for OpenFOAM® meshes have been implemented.
In addition, several performance improvements were
introduced in OpenDA to facilitate the handling of really
large grids.

Results
Several experiments have been done with the OpenDA/
OpenFOAM® combination. One interesting example is a
lid driven cavity, where the OpenFOAM® model initially

assumes that the lid induces a flow to the right. Then
observations from the same model with the flow at the lid
going to the left are fed into the model using OpenDA. Fil-
tering with the OpenDA EnKF filter successfully modifies
the flow to be consistent with the observations, flowing left
at the lid.

Conclusions
Conclusions: A generic coupling between OpenDA and
OpenFOAM® has been implemented, providing a powerful
and versatile data assimilation facility for OpenFOAM®.

References
www.openda.org, www.openfoam.com

Figure 2: Left: the initial flow field with flow at the lid going to the right.
Right: after assimilating observations from a model with leftward flow at
the lid the flow in the entire cavity changes its direction.

OpenDA is powered by Deltares, TU Delft and Vortech More information: www.openda.org

OpenDa applications, 2012/juni

OPENFOAM® is a registered trademark of SGI Corp

	Log-sheet
	Design
	Use cases
	Design for verification
	Implementation

	Stochastic modelling
	Terminology
	Conservation of flow quantities
	Conditions on the filter
	Conditions on the stochastic model

	Generating random fields

	Users guide
	Concepts in OpenDA
	1D periodic advection tutorial
	Algorithm setup
	Model setup
	Interaction and I/O
	Running the algorithm

	2D lid driven cavity tutorial
	Algorithm setup
	Model setup
	Interaction and I/O
	Running the algorithm

	Conclusions and Recommendations
	Assignment
	Configuration schemas
	Options reference
	Time formatting options
	OpenFoamDictionary options
	CsvDataObject options
	Noise model options

	Product flyer

