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Abstract

Hydrodynamic models are often the main source of information used in the engineering practice to
judge the performance of urban drainage systems with respect to the occurrence of flooding and the
occurrence of spills of wastewater into open water courses. If the hydraulic performance is deemed
insufficient, these models are used to determine the effect of proposed alterations to the system.

Due to the fact that hydrodynamic models are subject to uncertainties originating from various
sources, the reliability of the model results is limited. These uncertainties can be quantified when a
calibrated model is applied. However, is has been found that water level predictions for a storm event
other than the storm event used to calibrate the model are less reliable. In other words, the portability
of parameter sets obtained in calibration based on single storm events is limited. Logically, the use of
continuous time series containing multiple storm events for model calibration does not result in an
equally good match for a specific storm event, compared to single event calibration.

This research is aimed at investigating whether data assimilation can be applied to models in urban
drainage in order to simulate field observations for continuous time series. The process of data
assimilation combines measurements and models by updating the set of model parameter values
when new measurements are available (see Figure 1) . In order to obtain sufficient field observations
for data assimilation, a method for the design of a monitoring network capable of collecting
information on the relevant processes is elaborated.
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Figure 1: principle of data assimilation, adapted from (Solonen, 2011)

For two simple examples, the applied data assimilation method is able to accurately simulate water
levels and proves to be robust with respect to the initial estimation of the parameter values. Due to
time constraints, the anticipated implementation of the data assimilation method for the case study of
Delft's city centre drainage system has been unsuccessful. For the same case study, a monitoring
network has been designed. This network is able to collect a wide variety of information with respect
to the parameters of interest, while still incorporating some form of redundancy to account for sensor
failure and for the cross validation of data.

Although it has been found that data assimilation is successful in simulating water levels for
continuous time series, more research is needed on the implementation for large scale application in
the field of urban drainage. Due to the spread of information over the potential monitoring locations, a
well-designed monitoring network is considered to be a prerequisite for the collection of sufficient
information for the application of data assimilation.






Samenvatting

Hydrodynamische modellen zijn een belangrijke bron van informatie om het hydraulisch functioneren
van rioleringssystemen te beoordelen, en daarmee inzicht te verkrijgen in de gevoeligheid voor
wateroverlast en het optreden van riool overstorten. Als het functioneren onvoldoende wordt
beoordeelt, kan het effect van aanpassingen aan het rioleringssysteem berekend worden.

Door onzekerheden vanuit verschillende bronnen, is de betrouwbaarheid van deze modellen beperkt.
Deze onzekerheden kunnen gekwantificeerd worden door een gekalibreerd model te gebruiken. Het is
echter gebleken, dat voorspellingen voor een andere neerslaggebeurtenis dan gebruikt is om het
model te kalibreren minder betrouwbaar zijn. In andere woorden, de overdraagbaarheid van de set
model parameters verkregen door middel van kalibratie voor een neerslaggebeurtenis is beperkt. Het
gebruik van een neerslagreeks voor het kalibreren van een model resulteert niet in een even goede
match in vergelijking met de kalibratie voor één neerslaggebeurtenis.

Deze scriptie heeft als doel om te onderzoeken of data assimilatie toegepast kan worden op
rioleringsmodellen om veldwaarnemingen te simuleren voor tijdreeksen. Data assimilatie omvat het
combineren van metingen en modellen door de set van model parameters te actualiseren als nieuwe
metingen beschikbaar komen (zie ook Figuur 2). Om voldoende veldwaarnemingen te verkrijgen voor
data assimilatie, wordt een methode uitgewerkt om een meet netwerk te ontwerpen dat in staat is
voldoende informatie te verzamelen over de relevante parameters.
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Figuur 2: principe van data assimilatie, aangepast van (Solonen, 2011)

Voor twee simpele voorbeelden, is de toegepaste data assimilatie methode in staat om nauwkeurig
waterstanden te simuleren en is de methode robuust met betrekking tot de eerste schatting van de
parameter waarden. Vanwege de beperkte tijd is de verwachte implementatie van de data assimilatie
methode voor de case studie niet succesvol. Voor dezelfde case studie is een meetnetwerk
ontworpen. Dit meetnetwerk is in staat om informatie te verzamelen met betrekking tot de relevante
parameters, terwijl er voldoende overlap in de verzamelde data is om rekening te houden met sensor
defecten en voor de cross validatie van data.

Hoewel het is gebleken dat data assimilatie succesvol waterstanden kan simuleren voor tijdreeksen, is
er meer onderzoek nodig naar de implementatie van data assimilatie voor grootschalige toepassing in
de riolering. Als gevolg van de spreiding van informatie over de potentiele meetlocaties, wordt een
goed ontworpen meet netwerk beschouwd als een voorwaarde voor het verzamelen van voldoende
informatie om data assimilatie toe te passen.
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1 Introduction

One of the main objectives of sewer systems is to collect and transport excess storm water. When the
capacity of a drainage system is insufficient during a storm event, not all the water is transported
from the surface. This is referred to as pluvial flooding (see Figure 3).

Figure 3: Pluvial flooding during a storm event in Amsterdam, 2007

The design of a drainage system is an optimisation between economic benefits like the prevention of
damage and nuisance, and the costs involved in constructing and maintaining the system. From this
process of optimisation a standard, often related to a return period is specified. In the Netherlands it
is common practice to obtain insight in the frequency of flooding or the occurrence of spills of
wastewater into open water courses by applying a hydrodynamic model with a hydraulic load
corresponding to a certain return period.

investigation
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+
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Figure 4: Integrated Sewer System Management Process (Nederiands Normalisatie Instituut, 2008)

The process scheme in Figure 4 shows the link between measures taken to adapt a sewer system
based on the functioning of the system compared to the standard maintained. Since alterations in the
sewer infrastructure are accompanied by high investment costs and a long lifespan it is important that
the information source is reliable.

1.1 Problem

Hydrodynamic models are subject to uncertainties originating from various sources such as database
errors, simplification of hydrological processes, numerical errors, failing sewer components,
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incomplete description of processes, etc. (Korving, et al., 2002). These uncertainties influence the
accuracy of the model.

The information obtained from a monitoring network has a higher level of accuracy compared to
hydrodynamic models (Tait & ten Veldhuis, 2011), but is limited to the location, quantity and timespan
measured. Moreover, monitoring campaigns alone fail to answer the "what /f” question which on the
short term is important to assess the effect of proposed alterations. On the long term, information
from monitoring campaigns can be used as input for policy evaluation. A drawback is that although
one can assess if goals are achieved, it is not possible to directly perceive if the policy maintained let
to an optimal situation.

Uncertainties in the model results can be reduced when calibration of the model is applied. Calibration
of a model results in a set of parameters that optimally fits the model to measured data. However, the
portability of the obtained parameter values to other storm events is poor (Henckens, 2003). In other
words, water level predictions for a storm event other than the storm event used to calibrate the
model are less reliable. This is mainly due to two reasons; variation of parameters over time and an
incomplete description of processes that influence the quantity measured. The latter can be
exemplified using Figure 5; a certain process with output yis modelled by a first degree polynomial of
the form (y = bx+c), while in fact the process is governed by an arbitrary second degree polynomial
(y = ax’+bx+0) influenced by a measurement error.

5000
[ ]
4000 A ®
"calibration” ®
y =11.809x - 166.9 ®

3000 RZ = 0.7854 °

> ®
[ ]
2000 -
_ calibration period ® 2nd degree polynomial
1000 4 < with measurement error
+—+lineair (calibration)
D . T T T

0 50 100 150 200

Figure 5 : modelling a second degree polynomial with first degree polynomials

The portability of the values obtained for 6 and c is limited, since these values incorporate a
compensation for the missing term of the true polynomial due to an incomplete description of the
process by the model. Therefore, predictions outside the calibration period are less reliable. This
figure also shows that measurement errors do not only influence the portability, but also the model
uncertainty within the calibration period.

An alternative is the use of multiple storm events in continuous time series for model calibration.
However, it has been found that single event calibration results in a better match for a specific storm
event (Henckens, et al., 2007). This phenomenon can again be exemplified by Figure 5; if the
calibration period is extended, i.e. include more measurements in the calibration process, the new
values for b and cwill result in a deterioration of the match in the original calibration period.
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1.2 Research aim

From the previous paragraph one can deduce that in their present form calibrated hydrodynamic
models are unable to accurately reproduce measured water levels when using continuous time series.

The process of data assimilation is aimed at combining models and field observations. This concept
has already been widely applied in combination with oceanic models and atmospheric models (Wang,
et al., 2000). The principle of data assimilation is presented in Figure 6. The set of model parameter
values is updated when new measurements are available. Therefore the deviation between the model
output and the measured data is reduced over a longer period.

Rainfall data, etc.

Mg ey ’ MMM N l h

Improved
prediction

Figure 6: Principle of data assimilation
The principle aim of thesis is to:

Investigate whether data assimilation can be applied to models in urban drainage in order to simulate
field observations for continuous time series.

Data assimilation requires information concerning the state of the system in order to correct the
numerical model. Information on the relevant parameters is collected by a monitoring network. In this
context, a monitoring network is defined as a set of sensors placed in either the sewer system or
surface water system. A method will be elaborated to identify locations that are able to provide
information on the relevant parameters. With respect to the measuring density in time, a sampling
interval needs to be determined which is high enough to obtain sufficient information on the relevant
processes.

From the main objective of this thesis the following research questions are derived:

— How can potential monitoring locations that are able to provide sufficient data for data assimilation
be identified?

A methodology is elaborated that uses the results of a hydrodynamic model to find a set of locations

most fit for collecting information on the relevant parameters.
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— Can a hydrodynamic model be used to derive an upper boundary for the sampling interval of the
monitoring network?

The effect of an increasing sampling interval on the information content is evaluated, and used to

derive a measuring frequency for the case study.

— Is the applied data assimilation method feasible for application in the field of urban drainage?
Depending on the computational load needed to obtain reliable results, the applied data assimilation
method may become unpractical for some purposes.

1.3 Possibilities for data assimilation

The concept of data assimilation can be applied to improve policy decisions (Shi & van Albada, 2007).
Scenarios based on the results of data assimilated models can be used to evaluate the efficiency of
policies. This creates the opportunity to obtain insight in the effects of investments in the water
system. For instance the damage that is avoided during a certain storm event because investments in
the sewer system have been made. This allows for optimal management of the system, where optimal
can be referred to as minimizing the sum of yearly charges (Ven, van de, F.H.M., 2011).

Strategy / policy

Decision making / Board

v1 ! v ]

L

Establishing |— [\ Formulate |% Necessary
goals <+—— > strategy recourses
N | Formulate
strategy

b

Evaluate [—»

Determine
measures

4

A 4
Determine the effect of measures

Operational using the state determined with DA

Figure 7: Management operations adapted from (Nederlands Normalisatie Instituut, 1994)

Figure 7 shows the location of data assimilated models in management operations as a source of
information for the formulation of strategies instead of implementation and inspection. It should be
noted that depending on the alterations suggested, modifications to the system may influence the
derived state, therefore making the obtained prediction less reliable. When the suggested measures
are implemented and a new state is derived, data assimilation can be applied to evaluate the effects
of the changes as suggested in Figure 4.
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1.4 Outline of the thesis

This thesis can be divided in to two parts. The first part deals with the design of a monitoring network
to collect information on the relevant parameters. The second part is concerned with the application
of data assimilation. Both parts are applied to a case study. The relations between the different
chapters are presented in Figure 8. Up to now the relevance of the topic has been described along
with the aim of this thesis.

The literature review in chapter 2 is considered to be a foundation for the current research in addition
to indicating the significance within the framework. Moreover, gaps in literature are identified.

Chapter 3 introduces the case study and the characteristics with respect to the urban water cycle. This
area is used as case study in the following chapters.

A method for the design of a monitoring network capable of providing sufficient data on the relevant
parameters is described in chapter4. Besides optimising the information content, a de-correlation
algorithm is introduced that allows for some overlap in the information collected. In combination with
a genetic algorithm, this method is successfully applied to the case study area in chapter 6.

Theory on the data assimilation method applied in this thesis is discussed in Chapter 5, where an
example compiled in Matlab® is presented. In Chapter 7 the implementation of Data assimilation for a
commercially available hydrodynamic software package is discussed and applied to a simple model
and the case study.

Finally, conclusions and recommendations based on the findings in these chapters are presented in
Chapter 8.

1. Introduction

|

2. Literature Review

4. Monitoring 3. Study Area 5. Data Assimiliation
Metwork
I
W W

7. Data assimilation
inurban drainage
modelling

I |
v

6. Measuring Setup
Case Study

8. Conclusion

Figure 8: Thesis structure
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2 Literature review

The articles included in this review provide a more in depth description of the topics introduced in
Chapter 1. The significance of the calibration of models in urban drainage is covered. Hereafter a
distinction is made between static calibration and dynamic calibration, where the added value of
dynamic calibration for time series is demonstrated as well as identifying the gaps in literature. The
information requirements calibration imposes on the design of a monitoring network is discussed in
the last section of this chapter.

2.1 Significance of model calibration

The added value of a calibrated model is described by (Korving, et al., 2002). In this paper it is
mentioned that investments in sewer rehabilitation are often made based on model predictions that
are subject to uncertainty. Different types of uncertainties are identified and classified. Model
parameter uncertainty is described in more detail and is analysed by applying Monte Carlo simulation
on a reservoir model. The results for a particular case study show that this uncertainty can be
quantified when a calibrated model is applied. (Clemens, et al., 2005) identify the main value of a
calibrated model to be the quantified quality of the simulation per calibrated storm event and the
parameter set produced. additional benefits can be found in the possibility to detect discrepancies in
the structural database, obtain insight in system parameters such as weir coefficients, or to identify
deficiencies in the model applied. Assessment of the quality of the calibration is stated by (Henckens,
2003) to be one of the main objectives of model calibration. In the case of Loenen in the Netherlands
discrepancies were found during calibration that led to the findings of geometrical errors in the
database.

2.2 Deficiencies of static calibration

Most of the research on the calibration of urban drainage models carried out up to this date is
focussed on static calibration (e.g. (Clemens, 2001), (Di Pierro, et al., 2005) and (Kleidorfer, et al.,
2009)). In this context, static refers to a procedure in which the parameter values obtained remain
constant in time. For the case of Loenen in the Netherlands (Henckens, 2003) mentions that for
different storm events different sets of parameter values are found. It is recognized that the obtained
parameter sets cannot be directly compared since they have been derived with varying degrees of
certainty. It should however be noted that the difference in parameter sets is influenced by several
processes that are measured but are not incorporated in the model. Therefore water level predictions
for a storm event other than the storm event used to derive the parameter values will be less reliable.

Subsequently (Henckens, et al., 2007) state that a parameter set obtained from several rain events
will improve water level predictions. To this end continuous time series are used as input for a case
study. Results show that the parameter set obtained by time series calibration deviates significantly
from the parameter set obtained from the calibration using one of the storm events in the time series.
It is found that single event calibration does provide a better match for a specific storm event. This is
likely caused by the influence of hydrological processes and sediment transport on the long term.
Therefore, static calibration is regarded to be unsuccessful in water level prediction for time series.

2.3 Dynamic calibration for time series

In contrast with static calibration, dynamic calibration results in a set of parameter values that is time
dependent. (Rauch, et al., 2011) attempts to reduce the uncertainty in model predictions by proposing
an algorithm that updates model parameters when new measured data is available. If the parameter
value estimate distribution deviates too much from the previous distribution either the system has
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changed, or the measurements are wrong. The former can be identified if multiple consecutive
parameter value estimates show too much deviation, indicating the need for a new calibration. In the
event of the latter, the deviation will only occur once. The added value of and update of the
parameter values is seen in Figure 9, where an update results in a decrease in uncertainty.
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Figure 9: Uncertainty bandwidth in model predictions (20" and 80" percentile) and validation data after
calibration on the left and after 2" update on the right (Rauch, et al., 2011)

Moreover, this confirms the observation made by (Henckens, 2003) concerning the reliability of water
level predictions for a storm event, other than the storm event used to derive the set of parameter
values.

data assimilation addresses these uncertainties by updating the model parameter values when new
field observations are available. Therefore deviations between the model and the measured data are
minimized throughout a time series simulation. In other fields, data assimilation has already been
widely applied. For ocean models, Data assimilation is recognized as the most powerful tool to
improve consistency between the model and observations (Korres, et al., 2007). Although there is
some experience with the application of data assimilation for looped networks for drinking water
distribution (Kang & Lansey, 2009), no cases have been found concerning hydrodynamic models in
urban drainage. Different data assimilation methods are discussed by (Hutton, et al., 2010). The
authors report that the ensemble Kalman filter is less vulnerable to the non-linearity that is inherent to
looped networks, compared to the Kalman filter. The functioning of the Kalman filter and ensemble
Kalman filter is further elaborated in chapter 5.

2.4 Measurements for model calibration

(Ghil & Malanotte-Rizzoli, 1991) recognize a key problem for oceanographic assimilation that also
applies to the assimilation of data in the field of urban drainage. How can one derive the state from
one part of the system by using data derived from other parts of the system. This is dependent on the
evolution of information through the flow. Therefore it is crucial that a monitoring network is designed
in such a way that locations with a high information content are identified and monitored.

(Clemens, 2001) states that the design of a monitoring network and the calibration of a model are
interrelated and should not be viewed as separate components. (Henckens & Clemens, 2004) describe
a method that can be applied to design a monitoring network that meets the information requirement
for calibration while minimizing investment costs. Locations that potentially provide the most
information on a parameter are identified by calculating the influence that variation in parameters
have on the model results. To prevent the same information from being collected multiple times,
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correlation between sensors is punished by a de-correlation algorithm. However, (Henckens, et al.,
2005) state that if correlation between sensors is punished, the monitoring network is more
susceptible to information loss in case of sensor failure. Correlation between sensors can also be used
for the cross-validation of data. Expansion of the de-correlation algorithm and theory on the
information content is elaborated in chapter 4.

content
Low information
content

= High information
=)

Figure 10: Total information content during two rainfall events (Henckens & Clemens, 2004)

The same authors found that the layout of the monitoring network obtained by applying the method
described by (Henckens & Clemens, 2004) is very dependent on the storm event used, as seen in
Figure 10. Hence, the use of multiple storm events is suggested. (Kleidorfer, et al., 2009) emphasize
the relevance of the number of storm events and their characteristics instead of a fixed time period.
The results presented suggest that if the wrong storm events are chosen, calibration will not be
possible or an increase in the number of sensors is required.

Chapter Summary

e The match between simulated water levels and measured water levels obtained with
single event calibration, cannot be achieved with time series calibration.

e Data assimilation addresses this problem by updating the set of parameter values
when new field observations are available. However, applications in the field of urban
drainage are lacking.

e The process of calibration imposes requirements on the monitoring data collected.
Sufficient information on the relevant parameters is needed, while some overlap in the
information collected is needed to increase the overall robustness of the monitoring
network.
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3 Case study characteristics

In the following chapters the sewer system of Delft’'s city centre is used as a case study for the
application of data assimilation. A monitoring network is also designed for this system, in order to
provide the necessary observations. This chapter introduces the case and the characteristics of the
system.

Delft was founded over 750 years ago, and experienced a rapid expansion early on (Municipality of
Delft, 2012). Boundaries of the city centre are presented in Figure 11. The same illustration shows the
different canals that run through the city centre.

System type
Combined [

Foul [

Storm

Figure 11: Aerial photo of Delft’s city centre
(Municipality of Delft, 2012)

Figure 12: schematic representation of the
relevant sewer districts

Like most urban areas in the Netherlands, Delft's centre has a combined sewer system. This entails
that sanitary sewage and stormwater runoff is collected in a single system and transported to the
wastewater treatment plant. During heavy rainfall the drainage capacity of the sewer system is
insufficient and a combined sewer overflow (CSO) to the surface water will occur. As long as the
surface water level is below the crest of the overflow weir the sewer system can freely overflow to the
surface water.

The sewer system contains three subsystems; two small foul sewer systems and one combined. The
storage of the main system below the lowest sewer overflow construction is 8.4 mm, taking into
account 59.07 ha of connected surface area. This is considered to be a normal amount of storage in
the Dutch situation. There is also a small storm sewer system located in the area. Characteristics of
the main sewer system are found in Table 1.
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Table 1. Characteristics of the Delft city centre sewer system

Urban drainage system characteristics Delft city centre

Number of inhabitants 8,590

Storage volume 4962 m3 (= 8.4 mm)
Contributing area 59.07 ha

Pumping capacity 838.8 m3/h (= 1.42 mm/h)
Dry weather flow 103 m3/h (= 0.17 mm/h)
Number of CSO structures 48

lowest - highest crest level CSO structures  0.43 m-NAP  0.15 m-NAP

A connection is made close to the pumping station with the “Indische Buurt” sewer system as shown
in Figure 12. Because the Indische Buurt area has lower ground levels, a height-adjustable weir is
constructed just before the pumping station, preventing a large flow from the city centre system to
cause flooding in the Indische Buurt.

Figure 13: Canal in the city centre of Delft (Dijk, van, Z., 2005)

One of the canals is shown in Figure 13, what is striking is the small freeboard. The small freeboard

has the following implications for the sewerage system:

— A small increase in the surface water level can cause inflow of surface water in the sewer system
through sewer overflow constructions,

— Only a small increase in energy levels in the sewer system can be tolerated before pluvial flooding
occurs

The latter is addressed by constructing a large amount of sewer overflow constructions, namely 49.
However, model calculations still estimate pluvial flooding to occur locally more frequent than once
every year when the Dutch design storms are applied. The crest level of the lowest CSO structure is -
0.43 m NAP!, which is equal to the target water level of the surface water system. The former is dealt

! Normal Amsterdam Water Level is abbreviated to NAP
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with by installing a set of adjustable weirs (see Figure 15) in the canals in order to create a
temporarily isolated water system with its own target water level. The boundaries of this system are
presented in Figure 14. When heavy rainfall is expected, the switch on level of the pumping station is
set 0.20 meters lower than the normal target water level of -0.43 m NAP meter to create extra
storage.
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Figure 14: Overview of the engineering works Figure 15: Adjustable weir in closed position

used to create the isolated water system

Creating an isolated water system with a lower water level does not solve the problem completely,
due to the fact that sewer overflow constructions are located on both water systems. Therefore the
sewer system can act as a connection between the water system along the outer border and the
isolated water system created by the adjustable weirs, provided that the water level is above the crest
level of lowest CSO structure on both sides. This scenario is schematized in Figure 16.

g of

Lt wday

Figure 16: Scenario where the sewer system transports water from one surface water body to another
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As a result of this interaction, the available storage in sewer system and the overall drainage capacity
will decrease. Therefore pluvial flooding can be expected to occur more frequently. Since the CSO
discharges will also increase, not only the volume of raw sewage increases, but this volume will also
be spread over fewer sites, causing a progressive deterioration of the water quality locally. The
interaction between both systems is also amplified by the characteristics of the Delfland Basin, which
covers an area urbanised to a large extent. This results in a higher peak discharge in case of a storm
event, compared to a rural area.

Chapter Summary

e The Delft city centre drainage system is susceptive to pluvial flooding due to the
limited freeboard.

e Since the crest levels of the sewer overflow weirs are low compared to the target
surface water level, interaction between the surface water system and the sewer
system is likely to occur during storm events.

e A series of adjustable weirs have been constructed in the surface water system to
lower the target water level during storm conditions.
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4 Monitoring network

In order to gain information on relevant processes in the field of urban drainage, data originating from
various sources is collected. Although hydrodynamic models are widely applied to collect data, other
sources such as sewer inspections, flooding records from the fire brigade, monitoring networks, call
centres, pump operating hours, media etc. are also identified. The aim of this chapter is to describe a
methodology that can be used to design a monitoring network that is able to provide data which can
be assimilated by the hydrodynamic model in order to reduce the uncertainty in model results.

The first paragraph introduces the concept of establishing the information requirement in order to
determine what data should be collected. This line of thought is incorporated in the second paragraph
where a method is described that can be used to design a monitoring network. This method is applied
to a case study is presented in chapter 6.

4.1 Information requirement

According to (Lohuizen, van, C.W.W., 1986) the translation from data to an actual decision can be
described by the scheme presented in Figure 17. This scheme shows the steps taken to convert data
into a decision.

Figure 17:The knowledge household (Lohuizen, van, C.W.W., 1986)

Data can be defined as uninterpreted characters, signals, patterns that have no direct meaning for the
system under observation (Aanmondt & Nygard, 1995). A selection of the available data is made and
this information is analysed to increase the knowledge of the system. Interpretation of this knowledge
to form an image of the current situation and comparison with the desired situation yields the
necessary understanding to make a decision concerning the system.

This scheme can also be used from top to bottom. If the decisions a stakeholder ought to make are
known, these needs can be translated to data required to make this decisions. This is an important
link in designing an monitoring network for the collection of data. (Langeveld, et al., 2004) state that
for each process and water quality parameter studied the optimal configuration of a monitoring
network can be different. This implies that if it is not well known what information is needed to make
decisions, the optimum monitoring network to provide the necessary data is not likely to be found.
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This line of thought can be extended to the calibration of models. If a calibrated model is regarded as
an information source to improve the knowledge of the system, the data collected first needs to be
converted into information that is used by the model to accurately simulate the system of interest.

Therefore, in this chapter the information requirement for model calibration is determined. Relevant
model parameters are identified by quantifying the effect of a change in parameters on the model
results. Subsequently, a monitoring network is designed that maximises the information content on
these parameters.

It should be noted that a monitoring network often proves to be non-static. Evaluation of the obtained
information may lead to new or redefined information need (UN/ECE Task Force on Monitoring &
Assessment, 2000). In Figure 18 the monitoring cycle is presented. This figure shows that a new
information need can result in an update of the monitoring program.

Water management

Information needs Information utilisation

Assessment and reporting

Assessment strategles
Data analysis

Monitoring programmes

Data handling

Data collection

Figure 18: Monitoring cycle (UN/ECE Task Force on Monitoring & Assessment, 2000)

4.2 Design of a monitoring network

Several choices have to be made in the process of designing a monitoring network. This can be
approached as a constraint optimisation problem, where the information content should be optimized
taken into account the available budget (Henckens & Clemens, 2004). The information content can be
defined as the amount of linear independent pieces of information that are contained in a set of
observations from a monitoring network (Johnson, 2003). It should be noted that the information
content is not only influenced by the apparatus chosen, but also by the location and the time interval
between measurements. Therefore, if the information requirement is known, the following questions
need answering:

— what type of measurement is required? section 4.2.1
— what is the measuring accuracy and frequency needed? section 4.2.2
—  Where should the sensors be placed? section 4.2.3

4.2.1 Methods for water quantity measurements

In order to answer the first question, the water quantity to be measured is identified. This decision is
made based on the general suitability of the type of measuring device with respect to the system
under observations, and the accuracy of the measuring method.

Not taking into account the rainfall measurements, water levels and discharges are the quantities
commonly measured in urban drainage. Depending on the measuring principle water levels can be

30



measured with a high accuracy. Pressure head measurement has a measuring accuracy of
approximately 2mm (Rioned, 2003). Methods using ultra sound to measure water levels are able to
achieve a similar accuracy, but have a smaller measuring range due to the fact that sufficient distance
between the sensor and the water level is required (Rioned, 2009).

For discharge measurements different principles can be applied. Compared to water level
measurements, measuring accuracies reached are worse while the installations are more expensive
(Clemens, 2001). Therefore the monitoring network designed will be based on data obtained from
water level measurements. This will not only result in measurements with a higher accuracy, but also
the possibility to have more monitoring locations with the same budget.

4.2.2 Measuring frequency and accuracy

This section is aimed at defining a measuring frequency based on the accuracy of the apparatus
chosen. Noise originating from the measuring inaccuracy corrupts the signal, therefore making it more
difficult to reconstruct the original process. Beyond a certain measuring frequency, the extra
information obtained will be dominated by this noise and will not result in an increase in information.

When data produced by a hydrodynamic model is used to obtain an estimate for the sampling
frequency this noise term needs to be added, since the model produces the ‘original signal’ as seen in
Equation (4-1). The noise term is modelled as a series of random independent samples taken from a
normal distribution with a zero mean p. The standard deviation o describes how concentrated the
distribution of samples is around the mean, and is inherent to the accuracy of the measuring device.

f(t)=h(t)+e(t) (4-1)
Where:

ft) = signal that is sampled by a measuring device

h(t) = real signal

&) = noise originating from measuring inaccuracy

An upper boundary for the sampling frequency can be determined by analysing the signal in the
frequency domain as described by (Clemens, 2001). In the frequency domain information on the
strength of a signal within a certain frequency range is made visible. This is demonstrated in Figure 19,
where a sinusoid of 120 Hz and a sinusoid of 50 Hz are plotted. the different frequency components
are not distinguishable in the time domain but are in the frequency domain.

Signal in time domain Single-Sided Amplitude Spectrum of y(t)
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Figure 19: example of a 50 and 120 Hz sinusoid in the time domain and frequency domain (Mathworks, 2012)
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Conversion to the frequency domain is achieved by a Fourier transform. This entails the
decomposition of a signal into a series of trigonometric functions (Butz, 2006). This conversion does
not change the information content, but presents the same information in a different way. The Fourier
transform for a discrete signal with a finite duration is described by Equation (4-2) and the inverse
transform by Equation (4-3), see e.g. (Arfken, 1985).

N—1 =27i-nk

F=>fe M (4-2)
k=0
1 N 2mink

fe=—> Fe N (4-3)
N o=

Where:

N = number of observations

/ = imaginary unit

Kk =012, .. ..,N-1

The strength of variations as a function of the frequency can be seen by exploring the Power Spectral
Density function (PSD). For the transform of a series of observations (%) to F(w) the PSD function is
defined by Equation (4-4).

Foso (w) = F (w) E(a)) (4-4)

Where:

Fesp (w) = PSD function

F(w) = transform of a series of observations
F(w) = complex conjugate of F(w)

A theoretical example of a PSD function is presented by the dash-dot lines in Figure 20. The original
signal is composed of a function that increases linearly in time and the noise term is Gaussian white
noise with a standard deviation of 0.05.

Power spectral density function
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Figure 20: Example of a power spectral density function (PSD)
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The smoothed lines are generated to remove the small scale variation which makes it more difficult to
compare the two power density functions. This smoothing technique is proposed by (Hamilton, 1994)
and calculates the weighted average of a number of observations around the point of interest (see
Equation (4-5)). The number of observations taken into account is influenced by A, and the weights
assigned to the observations increases when closer to the point of interest. The total sum of the
weights equals unity. Values chosen for 4 are considered subjective. Too small values will not remove
the variation, while large values will introduce some bias (Hamilton, 1994).

~ b | h+1—|m|
Foso (wj ) = Z 7 | Feso (a)j+m) (4-5)
m=-h ( h+ 1)
Where:
Foso (a)j ) = weighted average value for observation j
h = parameter for the amount observations taken into account (2-h+1)

For example, when using 4 = 1 Equation (4-5) becomes:

1 1

a 1
FPSD (wj ) =Z FPSD (a)j—l)-'—a FPSD (wj ) +Z FPSD (a)j+1)

As seen in Figure 20, beyond a certain frequency the signal is dominated by noise originating from
measuring inaccuracy and therefore will not result in an increased information content on the relevant
process. Based on this observation, the maximum sampling frequency is defined by:

Foso (a)) ~ Epgp (w) (4-6)
Where:

FPSD (a)) = power spectral density function of the original signal

EPSD (a)) = power spectral density function of the measuring inaccuracy

According to Shannons theorem a signal can be reconstructed exactly from discrete samples when the
sampling frequency is at least twice the original signal frequency (Nooyen & van Overloop, 2008). This
is translated into Equation (4-7).

1
W < > ), (4-7)
Where:
wr = frequency of the original signal
ws = sampling frequency

4.2.3 Spatial distribution of the monitoring locations

The process of designing a monitoring network is aimed at identifying locations that provide the most
information on the process of interest. For model calibration this entails the gathering of information
on relevant model parameters. Reasons to omit certain locations on forehand are discussed. The goal
of a singular value decomposition of the Jacobian matrix is twofold; to determine the model
parameters best suited for calibration, and to find the set of monitoring locations with the largest
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information content with respect to these parameters. Subsequently a de-correlation algorithm is
elaborated to control the overlap of information.

4.2.3.1 Excluding locations

It is not possible, nor reasonable to measure every possible location (Kleidorfer, et al., 2009). This is
due to financial constraints, the amount of data that needs processing and various practical
considerations. Some locations need be omitted based on accessibility. This can concern for instance
manholes on private terrain, main traffic routes or other inaccessible locations (see Figure 21). It
should be noted that the manholes also need to be accessible after installation for maintenance and
repairs. Other manholes should be excluded based on hydraulic properties (Henckens, et al., 2005).
This includes manholes with pipes attached that have a invert level above the manhole bottom, which
causes unwanted turbulence. Measuring devices placed behind special structures (weirs, sluices etc.)
can be subjected to a higher gas concentration which can influence the accuracy of the apparatus
applied. These locations are removed later in the process to ensure that the maximum information
about the system is obtained.

Figure 21: difficult accessible manhole

4.2.3.2 Sensitivity analysis

At a certain point, adding more monitoring locations has a negligible effect on the total information
content for the parameters of interest. Furthermore not all locations provide the same amount of
information on the same parameters. This means that a set of locations needs to be identified that
provides sufficient information on all the relevant model parameters. The information content is
determined by analysing the Jacobian matrix. This matrix shows the sensitivity of the water level to a
change in a certain parameter. If a parameter value is varied and this does not result in a change in
water level, that particular location at a certain time does not provide information on the parameter in
question. The Jacobian matrix is computed using a finite difference approximation as seen in Equation
(4-8). For this approximation, the model is run n + 1 times. One run with the original parameter set,
and 7 runs where one of the parameter values is varied each time. The variation in the parameter
values is typically 5% (Langeveld, et al., 2004).

aht Ah,
J=——=_= (4-8)
= 8& Ap,
Where:
hy = the water level at a certain location at time t obtained from a model
P = model parameter no. i

In matrix form for an arbitrary location x, Equation (4-8) becomes:
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(oh,  ohy |
P ap,
iz . Lo . (4-9)
aht:t max . . . aht:t max
p ap,

Where the columns of the Jacobian show the sensitivity for a given parameter at different
observations, and the rows express the sensitivity of one observation for the different parameters.
The time interval between different discrete observations needs to be equal to the sampling interval of
the sensor chosen.

4.2.3.3 Singular value decomposition

Although the Jacobian matrix provides direct information on the effect of a parameter value change
on the water level at a certain time step, extra information originating from the change of the water
level over time is not made visible. This information can be extracted by computing the singular value
decomposition (SVD) of the Jacobian matrix. If the Jacobian matrix is denoted by J than the SVD of

this matrix is described by Equation (4-10).

J=Uzv (4-10)
Where:

J = m x n Jacobian matrix

l.=l = n x nmatrix containing the left singular vectors of J

2 = n x m matrix containing the singular values of Jas diagonal entries

Z = m x m matrix containing the right singular vectors of J

The singular values of Jare the square roots of the eigenvalues of !i and define to what extend J

stretches or shrinks certain vectors, and can be used to find the dimensions along which data shows
the largest variation. The direction in which the vector is stretched is defined by the eigenvectors of

!i that form the columns of V. An example for a simple case is shown in Figure 22, where the

singular values are denoted by 4; in a descending order, and the corresponding eigenvector by v . It

can be seen that the largest singular value represents the maximum stretching, while the
corresponding eigenvector identifies the direction.
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Figure 22: Schematic representation of singular values and eigenvectors for a ellipse (Lay, 2006)

If the Jacobian matrix is rank deficit, one or multiple singular values are zero. Although SVD is very
reliable with respect to numerical errors (Kalman, 1996), round off errors can result in extremely small
nonzero singular values. Therefore small singular values are assumed to be zero in this thesis. The
effect of a singular value that is (almost) zero on the information content for a certain parameter is
demonstrated using Equation (4-11) as stated by (Clemens, 2001) and (Olsthoorn, 1998).

dh

J===
L
J

—dh=J-dp
~dh=UzV" -dp (#11)
=uzVv’

dh, Uand Vv can be considered bounded, while dpcan take on any value. So if the singular value

approaches zero, a change in water level dh can only be observed for values of dp approaching

infinity. From this, one can conclude that the information content for a particular parameter is small
when the corresponding singular value is (nearly) zero. Throughout this thesis, parameters
corresponding to (nearly) zero singular values are denoted as being unidentifiable. Identifiability
problems may have two causes according to (Speed & Ahlfeld, 1996) and (Seber & Wild, 1989); data
dependent causes and model dependent causes. The former is influenced by the measuring accuracy,
sampling interval and the locations being monitored. The latter is inherent to the model applied.

With respect to the design of a monitoring network, singular values are used to identify model
parameters eligible for optimisation and to judge the information potential monitoring locations can
provide on these parameters. The former is achieved by removing parameters that correspond to
(nearly) zero singular values from the parameter set used for optimisation. The latter is further
elaborated in section 4.2.3.4.

The right singular vectors are used to link the parameters to the singular values. When a particular
singular vector has more than one non-zero entries, the corresponding parameters both influence that
particular singular value. this means that the individual parameters cannot be identified separately.

4.2.3.4 Optimisation of the information content

In addition to using singular values to calculate the information content of the system, singular values
can also be used to calculate the information content for a particular location. To this end a singular
value decomposition of the part of the Jacobian referring to the location in question is calculated. The
relative information content for this particular location can be described by Equation (4-12) (Henckens,
et al., 2005). This equation divides the set of singular values obtained from one location by the
singular values calculated for the entire system in order to normalize the information content.
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Pot IC
Xi

— |c._.
Ic, == (4-12)
Pot
Where:
Ic, = relative information content of location x

Ic,; = information content of location x for parameter /
Ic, information content of the system for parameter /
Pt number of parameters

This equation provides a basis for the design of a monitoring network that can be used for model
calibration, since parameters that have a larger influence on the water level are favoured. If the goal
of monitoring is to measure a specific parameter, but the water level is insensitive to variations of this
parameter a different approach is needed. This will likely result in @ more expensive monitoring
network due to a large amount of sensors (Henckens & Clemens, 2004).

It should be noted that the storm event chosen for this sensitivity analysis has a large influence on the
information content. This is logical since it is impossible to obtain information on a weir coefficient if
the storm event used does not result in a CSO. This can be dealt with by using multiple storm events
for the design. The amount of storm events used is limited by the maximum allowable size of the
Jacobian (Henckens, et al., 2005).

Another point of concern is the possible correlation between different sensors. If two locations show a
high correlation, the relative information content of the individual locations might be high but this will
not yield a high combined information content since the information provided has a large overlap. This
can be addressed by punishing one of the locations, therefore making it less likely that both locations
are monitored.

The following algorithm is proposed by (Henckens, et al., 2005) for the case where three sensors are
present. Since a small correlation is not considered a problem, an overlap allowance can be specified.

1. The locations are ordered in descending order with respect to the information content

2. All except the first location are de-correlated by multiplying the information content with a weight
< 1 depending on the correlation between the two locations.

3. The first sensor is taken out of the set, and step 1 is repeated until there are no more sensors left.

For the case where three sensors are present:

Ic, =Ic

Ic, =Ic, -W,,

IC; = Iy -Wy; - W, (4-13)
Where:

Ic, = relative information content of location x

Wiy = weight based on the normalized cross-correlation between sensor xand y

This algorithm is largely based on the principle that a high correlation between locations is punished.
The punishment is used to diminish the information content and therefore reducing the chance that
this location is chosen to be monitored. The weight factor can be calculated using Equation (4-14)
which is a slightly modified version of the equation mentioned by (Henckens & Clemens, 2004) .
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1 ifC, <0

W =< 1-IC (4-14)
N 1‘(? ifC,, >0

Where:

Wiy = weight based on the normalized cross-correlation between sensor xand y

o = the overlap allowance (0 — 1)

Cy = the normalized cross correlation between location xand y

The overlap allowance reduces this punishment and provides some room for overlap. An example of
this linear weight function is shown in Figure 23. For a correlation smaller than the overlap allowance
the location is not punished, while for a correlation of unity (correlation with itself) the information
content is reduced to zero.
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Figure 23: weight factor for different overlap values

Applying this algorithm results in a set of locations where information from one particular location
cannot be obtained (well) from another location in the set. This has the advantage that the same
information is not collected multiple times. Disadvantages can be found in the fact that if there is no
overlap and a sensor breaks down, potential valuable information is lost. Correlation between sensors
can also be used for the purpose of validation, to identify faulty measurements. (Harder, 2010) states
that for the purpose of data validation each sensor should have at least one well correlated sensor. He
defines a well correlated sensor to be G, > 0.8, while for some sensors good results are obtained for
Gy > 0.6.

In order to meet these requirements, Equations (4-13) and (4-14) need to be redefined. Instead of
punishing all other locations with a weight proportional to the correlation, one location with a
correlation closest to a predefined value will be weighted using a different equation. In order to
promote the sensor with a correlation near the predefined value and punish the others a second de-
correlation function is proposed. Several weight functions which foster points with a high correlation
and neglect other points are eligible. In this thesis a set of linear functions is chosen due to its
simplicity (see Equation (4-15)). Several test runs have also been made in this thesis with Gaussian
weight functions as mentioned by (Brubaker, 2006), where the standard deviation is used to assess
the correlation This resulted in the same set of monitoring locations.
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0 if ny <«
L(c —a) ifa<c, <p
IB— o Xy — Txy
W = (4-15)
Xy .
1 ifpg<C, <y
%(cxy -1) ify<c,, <1
y—1
Where:
Wiy = weight based on the normalized cross-correlation between sensor xand y
Cy = normalized correlation between sensor xand y
a = lower boundary for the cross correlation which values below get a weight factor 0 allocated
(0-1)
B = minimum cross correlation where the maximum weight factor is assigned (0-1)
% = maximum cross correlation where the maximum weight factor is assigned (0-1)

An example of this function is seen in Figure 24. A lower boundary of 0.50 is chosen, which results in
a weight factor of % at the lower boundary of correlation reported by (Harder, 2010). The weight
factor is unity between 0.7 and 0.9 and decreases to be zero at a correlation 1. The weight factor is
required to be zero at a correlation of unity to prevent a specific location from correlating with itself.
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Figure 24: weight factor for different values of the standard deviation and 1 = 0.8

A drawback of this approach is that situation 1 as schematically shown in Figure 25 can occur, while
situation 2 is preferred. Situation 1 shows that location A has a good correlation with location B, but
location B has a slightly better correlation with location C etc.. This will severally limit the diversity of
the total information content. Situation 2 on the other hand shows a network where each sensor is
well correlated with one other sensor.
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Figure 25: Correlation between multiple sensors and correlation between two sensors

In order to obtain situation 2 it is checked whether the first location in (4-13) has previously been
allocated to be the best match according to Equation (4-15). If this is the case, no attempt to find a
better correlated sensor is made. If the correlation between these locations is considered insufficient,
another better correlated sensor can be found. This can be determined by assessing if the correlation
is within a certain range. In Figure 24 a correlation of 0.7 is chosen as a lower boundary for this range.

As a summary the algorithm for de-correlation is redefined taken into account the proposed
modifications as mentioned above.

1. The locations are ordered in descending order with respect to the information content
Weights according to Equation (4-15) are calculated for every location except the first location, If
the first location has not been used for correlation with another location or this correlation is not
within the accepted range. The location with the largest weight, has this weight assigned

3. All except this location and the first location have their weight assigned according to Equation
(4-14).

4. The first sensor is taken out of the set, and step 1 is repeated until there are no more sensors left.

When the total number of sensors to be placed is increased, the information content of the last
sensors will become less relevant to the total score of a set of locations. This is due to the fact that
the de-correlation procedure has been performed multiple times and the weight for the last sensors
will already approach zero.

4.2.4 Sequence of operations

To summarise section 4.2.3, the different components introduced have been put in order in Figure 26.
This scheme assumes that the measuring accuracy and frequency are fixed. If the rank of the
Jacobian matrix is (nearly) rank deficit, indicating a low information content, information can be added
by increasing the number of observations. This can be achieved by adding monitoring locations
(increasing spatial density) or increasing the sampling frequency (increasing time density). Instead
this sequence decreases the number of parameters to fit the information available from a fixed
number of sensors placed on locations that provide the highest information content.
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Figure 26: Working sequence for the design of a monitoring network
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The part of the diagram which is below the dotted line is regarded as a test for the monitoring
network. This test is used to judge the overall identifiability and sensitivity of the parameter set.

As has been mentioned previously, a singular value decomposition of the Jacobian matrix of the
system reveals parameters eligible for optimisation. Parameters corresponding to (nearly) zero
singular values are removed. Locations that maximise the information content on the remaining

parameters are then incorporated in the monitoring network.
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Chapter Summary

e A monitoring network is designed to meet a demand for information. This demand
follows from the need for knowledge of a system, in order to make decisions
concerning the system.

e A singular value decomposition of the Jacobian matrix is used to quantify the effect of
a change in a certain parameter on the model results. This methodology is used to
identify relevant parameters and to derive a set of monitoring locations.

e The objective of the de-correlation algorithm in the design process is to balance the
overlap in the information collected, so that the combined information content of the
locations is maximised while still retaining some overlap for the cross validation of
data and sensor security.
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5 Data assimilation

This chapter provides a more in depth view on the theory concerning data assimilation. The data
assimilation method used in this thesis is introduced, and the performance of this method for a simple
example is discussed.

The concept of data assimilation aims at combining uncertain models with uncertain measuring data
in order to make the best estimate of the system state at a particular time at which observations of
the systems are available (Hutton, et al., 2010). Sequential data assimilation is a specific type of data
assimilation referring to the process where a new state prediction is produced when new observations
are available to limit the deviation of the model with respect to the measured data. An example of
variation in the state over time due to the availability of new measurements is presented in Figure 27.
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Figure 27: The application of sequential data assimilation on the state with respect to observations (Eskes, et al.,
1998)

Although different data assimilation methods are available, this thesis focusses on the application of
the Kalman filter for this purpose.

5.1 The Kalman filter

The classical Kalman filter (KF) is a popular algorithm for state estimation of linear systems. This
technique was proposed by (Kalman, 1960), and is based on minimizing the variance of the estimation
error (Simon, 2001). Noise affecting the system has to be uncorrelated in time, and have an average
value of zero. The state is a description of the varying quantities of a system at a given time. In case

of a simple linear system, matrix é can be denoted as the model changing the state over time.

evolution of the state over time is described by Equation (5-1).

X = AX, + W, (5-1)
Where:

Xy = state at time k

é = matrix containing information on the quantities affecting the state

W, = process noise

The observations are related to the state by matrix C as seen in Equation (5-2) and can be
represented by different quantities, for instance measured flowrates or water levels.

Y, :g)_(k +Z, (5-2)
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Where:

yk = observations at time k

Xy = state at time k

C = matrix relating the state to the observations
Zy = measurement error

In the form of Equation (5-1) the state is not influenced by the observations, and the estimated
observations are likely to increasingly differ from the real observations over time depending on how
well the model describes the relevant processes. The Kalman filter makes a prediction of the state,
and then compares the prediction of the observation with the real observation. The predicted state is
corrected based on the error covariance matrices and the difference in the estimated observations and
the measured observations. All the steps comprising the KF are presented in Figure 28. These steps
can be categorized in forecast and analysis steps.

.
k :
Vil V.+1 o Observation

Actual state
Ciet 1

attimek

Ax Kis1
% ——» X1 ——— 3 X1 [--- Forecast

Figure 28: Kalman filter steps; the time step is denoted by k and the forecast by .

It should be noted that the true state is never accessible, but information about the state is obtained
through measurements. In the forecast step, an estimate of the state of the system and the
observations for the next time step is made.

a f f
xe=x+K (v, -v/) (5-3)
Where:
Xﬁ = analysis estimate of the state
)_(II = forecasted state
K = Kalman gain matrix
yk = observation
f - ,
yk = prediction of the quantity to be observed

Equation (5-3) is the main component of the analysis step and consists of two terms. The first term is
the forecasted state, which is adjusted by the second term. If the difference between the forecasted
and measured observations increases, the influence of the forecasted state decreases. This is almost
trivial, since a large deviation indicates that the forecasted state does not approach the actual state.
The Kalman gain is computed at each time step and depends on the model state error covariance and
the measurement error covariance as stated in (5-4).

K, =P,C(CPCT+S,) (549

@)
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Where:

ﬁk = Kalman gain matrix

Ek = model state error covariance matrix

g = matrix relating the state to the observation
g = measurement error covariance matrix

N

From Equation (5-4) a number of characteristics of the Kalman filter can be deduced; when the
measurement noise is increased the Kalman gain will decrease, therefore giving less weight to the
observations, and making the state more dependent on the forecasted state. If the model state error
covariance is large the influence of measurement errors is limited, thereby increasing the effect new
observations have on the state. The model state error covariance is updated by:

P.,=AP A +S -APC'S'CP A (9
Where:

Ek = model state error covariance matrix

é = matrix containing information on the quantities affecting the state

g = matrix relating the state to the observation

gw = process nhoise covariance matrix

é , = measurement error covariance matrix

An example of the Kalman filter can be found in Annexe V.

5.2 The ensemble Kalman filter

Although the KF performs well for linear problems, it is found that most hydrological problems are
non-linear in nature therefore requiring more advanced techniques (Drécourt, 2004). The Extended
Kalman Filter (EKF) was introduced (Kalman & Bucy, 1961), and solves this problem partly by local
linearization of non-linear systems. For systems with strong non-linear dynamics the EKF is found to
be unsuccessful (Burgers, et al., 1998).

The Ensemble Kalman Filter (EnKF) is introduced by (Evensen, 1994) and integrates an ensemble of
states forward in time. The spread of the model ensemble is used to represents the model error
covariances, thereby eliminating the necessity to calculate the Jacobian. In Figure 29 the steps of the
EnKF are shown for an ensemble size of 3. The linear system has been replaced by the model £
where x is the state of the system and v is the known input (e.g. rainfall measurements, geometry
and known parameters).
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Figure 29: EnKF steps for an ensemble size | = 3

For each ensemble member the actual and forecasted state is calculated, and the forecast ensemble
mean is regarded as the best estimate of the state. The Kalman gain and the measured observations
are identical for each ensemble member. It is assumed that all probability distributions involved are
Gaussian (Mandel, 2006). Since the probability distribution of the actual state is based on an
ensemble of state estimates, and increase in the ensemble size will result in a better estimation of the
true state. (Gillijns, et al., 2006) performed model runs with different ensemble sizes for various
examples and used the mean squared error to assess the performance of the EnKF. It was found that
an ensemble size of 50 to 100 is sufficient for most problems. A minimum ensemble size of 100 is
reported by (Leeuwenburgh, 2005) for complex ocean and atmospheric models. The same article
states that large ensemble sizes are too computationally expensive with respect to added benefits.
Equations (5-6) and (5-7) describe the analysis step and forecast step respectively.

K =P (P!.)

fli

X =x K (Y -y (5:6)
—a 1 q ai
Xy :_Z)_(k

q=

Where:

ﬁk = Kalman gain matrix

f .
Exy = forecast state error covariance

f .
Eyy , = error covariance of the measurements

gz’i = analysis estimate of the state for ensemble member /
fi :

Xy ' = forecasted state for ensemble member /

\_/L = zero-mean random variable with a normal distribution

yk = observation
fi - ,

yk b= prediction of the quantity to be observed

—a

Xy = state ensemble mean

q = ensemble size

/ ensemble number
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fli aii [
X =f ()_(k ’Hk)‘*'V_Vk
of IRy
Xy =az)_(k+1

i=1

flJfr of fq _f
E = |:Xk+1 X1 Xy _Xk+1j|

a | f1 f f.qg f (5-7)
EL =y -y vty
1 T
Pf __ - E f ( E f )
1 T
Pf _ Ef (Ef )
=yy,k q _1=y‘k =y,k
Where?:
f (xi'i ,gk) = non-linear system with known input
V_\Iik = stochastic forcing representing model errors
f .
E = ensemble error matrix

=k
a
E = ensemble of output error

For the complete derivation of the EnKF, the interested reader is referred to (Burgers, et al., 1998) or
(Evensen, 2003).

5.2.1 Example of the EnKF for a simple reservoir model

In order to illustrate the application of the EnKF, a reservoir model is introduced. The model is
schematically presented in Figure 30 and is governed by the mass balance in Equation (5-8). The
inflow is precipitation on the surface of the reservoir, while the outflow is controlled by a weir.

el

Figure 30: Reservoir model

2 For the declaration of the other variables, see Equation (5-6)
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dh _, B-a(h-6)’

dt A &
Where:
h = water level in reservoir [m]
a = weir coefficient [mZP®/s]
B = weir power [-]
A = constant surface area of the reservoir [m?]
I = rain depth [m]
B = width of the weir [m]
6 = crest level [m]

The weir controlling the outflow will only function when the water level is above the crest level. The
two parameters to be optimized are the weir coefficient a and the power B, and the water level in the
reservoir is the observation. Since only parameters related to the weir are optimized, any water level
below the crest level will not yield any information useful for data assimilation.

Rainfall data

Improved
prediction

Figure 31: Principle of the twin model data assimilation concept

In order to test the performance of the EnKF a twin model experiment is conducted, as demonstrated
in Figure 31. This comprises a model with known parameter values ¢ and £ to produce the
observations that are assimilated in to a copy of the model in order to estimate the parameter values.
This setup makes it possible to compare the parameter values derived by applying data assimilation to
the values used to create the observations. It should be noted that successful assimilation for a twin
model experiment does not guarantee the method to have the same performance for real measured
observations, since that requires the assimilation method to compensate for processes not
incorporated in the model as well.

For this example the time independent values for a and B used to create the observations are 0.4 and
1.4 respectively, and the crest level is 1.3 meter. To test the robustness of the EnKF, the initial
parameter set of the assimilated model is incorrect (¢ = 1 and S = 2.5). The model is run for 60 time
steps with a sampling interval of 2 seconds and an ensemble size 100. Precipitation is artificially
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generated from an uniform distribution and the initial water level is below the crest of the weir. The
outcome of the model is presented In Figure 32; the top graph illustrates the evolution of the
parameter values over time, while the bottom graph shows the difference between the measured
water level and the predicted water level by the EnKF. During the first time steps the parameter
values do not vary, corresponding to the water level being below crest level. After this period, the
deviation between the modelled water level and the measured water level is the largest. As the
parameter values converges to the true values, the deviation between the measured water level and
predicted water level rapidly decreases. After 20 time steps, water levels are simulated with error
margins beneath 5 centimetres.
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Figure 32: application of the EnKF on the reservoir model

There is a difference in the time the algorithm needs to reach the true parameter values, and the
deviation from the true values over time after this moment. The weir power needs more time to
approximate the true value, indicating the system is less sensitive to this parameter. This is also
reflected in the water levels that hardly deviate from the measured water levels in the timeframe
when the weir coefficient is stable and weir power is not.

A simulation with constant precipitation is also carried out, where the parameters values found
diverged from the true values (a and B increased). This is logical, since more than one set of
parameter values will yield the same water level when the intensity of the storm applied is time
independent.
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Chapter Summary

e The ensemble Kalman filter (EnKF) is the data assimilation method used in thesis.
This method is known to perform well for non-linear problems.

e An ensemble of model states is integrated forward in time in order to estimate the
model error covariances, therefore the number of ensemble members will influence
the quality of the estimation of the true state.

e For a simple reservoir model in Matlab® the parameter values derived by the EnKF
converge to the true parameter values, despite the incorrect initial estimation of these
values.
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6 Measuring setup case study

The methodology for the design of a monitoring network elaborated in chapter 4 is applied to the case
study in this chapter. In order to reduce the computation time needed to find a set of monitoring
locations, the application of a genetic algorithm is investigated. The set of parameters to be optimised
is derived by analysing a singular value decomposition of the Jacobian matrix. Furthermore, the
evolution of the information content with increasing sampling frequencies is analysed in order to
derive a measuring frequency.

6.1 Omitted locations

A survey is conducted in order to identify locations not fit for placing and maintaining monitoring
equipment. In Figure 33 four types of areas are presented, that are excluded for the placement of
monitoring equipment. From the top left in a clock wise direction: a square with a market and other
events limiting accessibility and increasing fouling, a high traffic intensity road introducing safety
issues, a narrow alley and manholes (partially) on parking spaces. The latter is frequently present next
to the canals where parking spaces are often located along the quayside.

Figure 33: Types of area identified to be less suitable for the placement of monitoring equjpment (also see the
above description)

In the surface water system, culverts are excluded from the list of possible measuring locations based
on accessibility.

6.2 Genetic algorithm for de-correlation

Not taking into account the omitted locations, the surface water and sewer system has approximately
1100 potential monitoring locations. If the budget allows for the placement of ten sensors, this results
in 7.05 * 10%® possible combinations according to Equation (6-1).
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n!

Combinations= ——————— (6-1)
(n—r)tr!
Where:
n = number of sensors to be placed
r = number of monitoring locations 100000
"
Using a 8 GB RAM, i7-2630 QM processor § 12888
circa 300 combinations can be processed per s 100
second, which can be translated to 7.45%10"3 = 10
years needed to calculate the information Tg 1 . - :
content for all combinations using the de- = Age earth Age of the Calculation
correlation procedure as stated in chapter 4. universe time needed

To get an idea of the spread in the scores assigned by the de-correlation procedure, 100 locations
were taken from a uniform distribution. If 5 locations can be monitored this results in 75,287,520
possible combinations according to Equation (6-1). The empirical cumulative distribution function of
the result is shown in Figure 34. The best set of locations has a total information content of 0.3742.
As seen in Figure 34 the number of combinations that comes even close to this value is very limited,
and clearly demonstrates the inefficiency of computing the total information content for all locations.
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Figure 34: empirical cumulative distribution function for 100 locations

In order to reduce the computation load the application of a Genetic algorithm (GA) is investigated.
The concept of GA was introduced by (Holland, 1975) to simulate the process of evolution. Individuals
with better properties have a better survival chance and are therefore more likely to produce
offspring’s (survival of the fittest). Therefore, over several generations the individuals with these
properties will become more dominant inside the population. This is referred to as natural selection.

It is evident that after a large number of generations the whole population consists of individuals with
more or less the same properties. New traits are introduced in the population through random
mutations. If these mutations result in individuals with better properties natural selection will spread
these traits through the population over several generations, while mutations that cause less
beneficial properties will gradually fade from the population. A simple example is shown in Figure 35,
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where bacteria which are more resistant to antibiotics have a better survival chance and therefore
come to dominate the population.

Before antibiotics

After antibiotic

Final population ;

Resistance level

oJeyor X X X |

Low High

Figure 35: increasing antibiotic resistance due to natural selection (Urbano , 2010)

(De Jong, 1975) first started using a GA to solve an optimisation problem. Since then GA has been
widely used in different fields including urban drainage, e.g. (Clemens, 2001), (Langeveld, 2004),
(Rauch & Harremoés, 1999) and (Di Pierro, et al., 2005).

If the de-correlation procedure is referred to as the objective function which needs to be maximized,
the maximum value or global maximum of this function is the set of locations which has the highest
score. The GA has the ability to find different maxima in a large search space without getting stuck in
a local maximum (see Figure 36), however since the process is stochastic the results may vary and
the algorithm may have difficulties finding the global maximum.

local and global
local 1 / maximum
maximum

- i \ =
local
minimum

r

Figure 36 Shape of a objective function for a single parameter (Sparknotes, 2012)

An outline of the GA is given in the flowchart presented in Figure 37. The population consists of a
predefined number of individuals. Each individual has a number of genes equal to the number of
parameters that are required to be optimized, which in this case is the number of sensors to be placed.
The fitness of each individual is calculated using the de-correlation procedure.
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Figure 37: Genetic algorithm flowchart

The n individuals with the best fitness will be copied to the next generation, thereby preserving the
best combinations of locations. From the remaining individuals a fraction (crossover fraction) is used
to create crossover children (see Figure 38) by picking genes from two parents. The other children are
created using the genes from a single parent where each gene has a certain chance to be mutated
(mutation rate). In the end a new generation is created with the same size as the initial population.

. Elite child

ER*E]

Crossover :hlld

—
Mutation child

Figure 38: creation of the next generation by three kinds of children (Mathworks, 2007)

The optimization toolbox in Matlab® allows for the user to choose between different functions for
creation of the population and children and the interested user is referred to the literature, e.g.
(Haupt & Haupt, 2004), for a more in depth explanation. However a few remarks about the function
of choice should be made taken into account the nature of the optimization problem:

— All genes should be integer values (since they refer to location numbers)
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— The variables are independent

The former means that every member of the initial population and the mutated children produced by
the chosen set of functions should be integer values between 1 and 7 where nis the total number of
locations in the system. The latter refers to the fact that for example if an arbitrary location 3 has a
high information content this gives no information about the information content of location 2 or 4,
this can also be seen in Figure 39. Therefore choosing a mutation function that picks integers near
locations that have a high information content will not improve the result, and might even worsen the
result since it narrows the search space. This implies that the algorithm is more likely to be successful
if the mutation function picks the locations from an uniform distribution, and that a larger population
is needed for integer problems compared to non-integer problems in order to find the global
maximum in a range of locations with local maximums that can be as wide as one integer.
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Figure 39: example of the total information content for two monitoring locations

Three important parameters to determine are the population size, the crossover fraction and the
mutation rate. A good combination of these parameters will yield a solution that is (close to) the
global maximum and is reproducible. Optimum values for these parameters depend on the fitness
function (Mathworks, 2007) and therefore differ depending on the problem. Hereinafter two examples
are elaborated with the same locations as was used to produce Figure 34. In the first example the
standard mixed integer optimizer available in the Matlab optimisation toolbox is used. This optimizer
uses a function for mutation and creation of the initial population that is bases on (Deep, et al., 2009).
Test runs with different values for the population size and the crossover fraction have been made and
repeated multiple times. The mean total information content is plotted in Figure 40 and the standard
deviation in Figure 41. The algorithm is terminated when either 100 generations are computed, or the
average change in the total information content is less than 10°%°.
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Figure 40: mean of the total information content using the standard mixed integer optimizer
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Figure 41 standard deviation of the total information content using the standard mixed integer optimizer

The plots together provide information on the quality of the result. The mean value should correspond
to the maximum total information content found when computing all the possible combinations. A
large standard deviation implies that the result found is not reproducible, which is influenced by the
stochastic character of the algorithm. According to Figure 40 the best total information content found
is for the largest population size and a crossover fraction of 0.2. It makes sense that the best solution
is found when using the largest population, since a larger population means the solution space is
searched more intensively. This is however at the cost of computation speed. The mean total
information content found is not near the value found for the maximum total information content
when computing all the possible combinations. The best mean total information content does however
correspond to the lowest standard deviation according to Figure 41, indicating the result to be
reproducible.

The second example utilizes a custom function for the mutation and creation of the initial population
that has been created by the author. The creation function utilizes prior information given by the fact
that the information content of each individual location is known. So if the nhumber of locations in the
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initial population is smaller than the total number of locations in the system, the creation function
picks the locations with the largest information content for the initial population. However, if the
number of locations in the initial population is larger than the total number of locations in the system,
additional locations are picked from an uniform distribution.

The influence of the mutation function is determined by the mutation rate. The mutation rate is
defined as the chance that a gene is mutated. The new value for the particular gene is also picked
from an uniform distribution, and is set to be an integer value referring to a potential location. The
results for different values of the mutation rate and the crossover factor is shown in the following
plots. Each plot refers to a population size. The mean total information content is plotted in Figure 42
and the corresponding standard deviation in Figure 43.
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Figure 42: mean of the total information content using the custom optimizer
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Figure 43: standard deviation of the total information content using the custom optimizer

The results in Figure 42 point out that although the computation load increases linearly with the
population size the improvement of the result does not. This plot also points out that when a smaller
population size is chosen, correct values for the mutation rate and the crossover fraction are vital for a
good solution, while for larger population sizes the values chosen are less relevant. A similar result is
observed for the standard deviation. The results obtained applying the custom optimizer function are
closer to the maximum total information content for the same population size while having a smaller
standard deviation compared to the results from standard mixed integer optimizer. Therefore one can
conclude that the custom optimizer function is more efficient for this type of problem.

The next step is to apply the genetic algorithm to the case study. For the case study a monitoring
network consisting of 31 sensors is designed. From these 31 sensors, 16 are already present on both
sides of the adjustable weirs in the surface water system. Of the 15 remaining locations, three are
fixed locations since these sensors provide information on the boundaries of the sewer system. This
means that 12 monitoring locations need to be determined by the optimisation algorithm.

Using a mutation rate of 0.4 and a crossover fraction of 0.4 which are favourable according to Figure
42 and Figure 43 the population size is varied, since there are 1045 locations where a sensor can be
installed in the case study area. Each population size is calculated 5 times in order to get an indication
of the spread. Results from Figure 44 and Figure 45 indicate a population size of 1000 to be sufficient.
Increasing the population size further will dramatically increase the computation time while not
resulting in a much better set of locations.
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Figure 44: Mean information content of 31
monitoring locations chosen from 1045 locations
where sensors can be installed

Figure 45: Standard deviation of 31 monitoring
locations chosen from 1045 locations where sensors
can be installed

6.3 Parameters for optimization

In this paragraph a set of parameters for the case study, eligible for optimisation is derived by using a
singular value decomposition of the Jacobian matrix. According to (Ummels & Clemens, 1998)only
process related parameters should be optimized, and that other parameters involved are considered to
be fixed values. Since the majority of the parameters introduced in the model of the case study are
weir coefficients, this group of parameters is first studied in more detail.

There are 49 weirs located in the sewer district of interest. This large number of weirs is inherent to
the limited freeboard in the area, which cannot cope with high energy levels. As a first indication, the
number of parameters optimized should be one or two orders of magnitude smaller than the number
of measuring locations (Clemens, 2001). Therefore it is necessary to reduce the number of weir
coefficients in order to keep the monitoring network cost effective. A reduction of weir coefficients can
be obtained by omitting certain weir coefficients or by clustering weir coefficients together. The
former method is suitable for weirs that have an insignificant effect on the system, for instance a weir
that has a high crest level and therefore rarely overflows. The latter method can be applied for
locations with similar flow patterns and geometry, or locations that cannot be identified separately.

Since the value of a weir coefficient does not only depend on the type of weir but also on the
approach flow velocity, plan contraction and the crest rounding (Hager, 2010) one can conclude that
not only the geometry of the CSO manholes need be similar to a large extend but also the feed and
drainage structures of the CSO need to be similar. In this thesis, weir coefficients are not combined in
this way since the model does not contain the necessary information required due to simplifications
and conversions. Using the singular value decomposition discussed in chapter 4.2.3.3 weir coefficients
that cannot be identified separately are clustered. Since two parameters cannot be identified
separately when they influence the same area in time and space, it is expected that weirs in the same
region with similar crest levels can be combined. A typical example in the Delft area can be found
where inverted siphons are used to connect drainage areas separated by open water (see Figure 46).
The CSO structures are located close together and have similar crest levels.
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Figure 46: Typical inverted siphon construction under a city canal with a CSO on both sides

It was found that the amount of RAM available is limiting for the export of data from the hydraulic
software package used. Therefore the number of parameters that can be studied for the amount of
possible monitoring locations in the system is restricted to 28. Since the nhumber of parameters related
to the hydraulic behaviour of weirs is by far the largest, it is decided to first reduce this subset. For
this purpose the Dutch design storm nr 2 is applied as hydraulic load. This storm event is
characterized by a relative short duration, resulting in less data to process, with an intense peak of 50
I/s*ha at the end corresponding to a return period of 0.25 years. Since the model is not able to
reproduce the processes related to pluvial flooding correct, a more intense storm event is not applied.
The resulting singular values and eigen vectors of the network after the first round of clustering can
be found in Annexe I. Several weirs are omitted from the set because they dominate eigen vectors
corresponding to nearly zero singular values. A closer inspection shows that these weirs have relative
high crest levels, or can be bypassed internally.

After several runs the parameter subset is reduced to a total of 14 weir coefficients, mainly due to the
clustering of parameters. It is found that whether parameters can be identified separately, is more
related to the crest levels than spatial distance, since some weirs located 750 meters apart cannot be
identified separately. This means that the area of influence of a weir is large, resulting in overlap with
another weir quickly. from this phenomenon one can deduce that the separate identifiability of weir
coefficients is more related to measuring density in time than space.

Merging the weir coefficients with the friction parameters and runoff parameters yields the list of 27
parameters presented in Table 2.
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Table 2. Set of parameters relevant to the applied model after clustering the weir coefficients based on
Identifiability

Runoff parameters Weir coefficients
(R1) Linear reservoir constant closed flat (W1) Weir 3
(R2) Linear reservoir constant open flat (W2) Weir 8
(R3) Linear reservoir constant roof sloped (W3) Weir 21
(R4) Linear reservoir constant roof flat (W4) Weir 22
(B1) Storage closed flat (W5) Weir 23
(B2) Storage open flat (W6) Weir 42
(B3) Storage roof sloped (W7) Weir 49
(B4) Storage roof flat (wWs) Weir 17+19
(11) Infiltration open flat (W9) Weir 4+11+9+10+18
(D1) DWEF (I/h*p) (W10) Weir 34+35+46
(W11) Weir 30+32+37+29+33+36+38
Friction parameters (W12) Weir 5+6+7+15+16
(F1) Pipe roughness (W13) Weir 13+14+20+31
(F2) Channel bed friction (W14) Weir 39+41+43+26+44+24+25

(F3) Friction bridges + culverts

A singular value decomposition for this parameter set is calculated for three different storms. The
number of storms used is limited by the available computer power, for the three applied storms the
Jacobian has more than 121*10° entries. The set of storms is chosen to be able to provide information
on most of the parameters without pluvial flooding occurring. A description of the progress of the
different storms over time can be found in Annexe II. Standard design storm 02 is chosen because of
its high intensity peak, providing information on the most important weirs. The storm event of 24-07-
11 has a higher total water depth, which is considered to be more critical for the surface water system
and will give information concerning the importance of friction in the water system. The storm event
of 19-01-12 has a lower peak intensity compared to standard design storm 02, but a longer duration
and a higher total water depth.

The singular values and the corresponding eigenvectors of the network for these three storms are
presented in Annexe III. Pipe roughness predominates the eigen vector corresponding to the largest
singular value. Storage open flat and infiltration open flat both influence the same eigen vector, which
can be explained by the fact that both parameters influence the total amount of water entering the
system for that surface type. Remarkable is the interaction between W2 and several runoff
parameters (see Figure 47). W2 is the weir partially blocking flow to the pumping station during storm
events, one of the locations holding the most information. Because the crest level of this weir is the
lowest in the system, it has a large influence on the system in a stage normally dominated by the
runoff parameters.
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After the genetic algorithm was applied for 15 new monitoring locations, a further reduction of the
number of parameters was possible since information is now collected from the subset of locations,
instead of the whole system. The resulting singular values and eigen vectors are presented in Table 3.

Table 3. Singular values and corresponding Eigen vectors for 15 locations selected by the genetic algorithm

Singular valees
; g 8 3 E g2 %8 783 E g% 2|5 g8
#0842 &8 &8\ 208 g2 8k E g
e ed - = e = £ = = = = ol - i o -—

Parameters Eigen vectors
R 00 03 00 49 01 01 01 01 ©00 00 ©0 Ot 00 00 00 00 00 00 00
R2 o0 02 03 o0i| 0% 02|04 00 B8 00 | DO OO0 [ 0O 00 8O 00|60 00 00
R3 08 01 02 01 01 05 08 D04 D1 04 01 01 00 00 00 00 OO0 00 0D
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B1+B2 66 00 01 00 00 07 04 46 02 01 01 01 00 00 00 00 00 00 OO
B3 00 43 03 03 04 00|00 00 GO 00D OO0 00 00 00 00 00 00 00 00
B4 G0 00 00 00 00 00 OO0 ©00 0Ff 1 060 00 48 00 00 00 DO 00 00
" 0 00 00 00| 00 G2 | @7 06 ©03 02 |00 0Ot |00 00|00 o0o|og 00 0@
o 00 00 00 00 00 00 ©0 ©00 B0 00 00 00 0O 00 180 00 00 00 00
w2 06 00 00 01 60 03 00 04 09 97 61| o5 60| oo 04| oo o0 0o | 0D
Wt 06 o0¢ 00 00 00 00 @0 00 ©0 00 ©O0 00 G0 0D 00D 00 68 18 00
w7 66 00 |00 00 @0 00 G0 0000 oD 00 00 00 00 @0 10 00 00 0O
Wit 00 00 @0 01 0D 00 Of D02 OB 02 ©0 05 01 00 00 00 00 00 00
W3HWS 06 o0 00 00| 08 o0 |00 00 ©0 oo |00 00 |00 1000 ool6@ 00 09
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WSHN124814 00 00 01 0248 o100 00 00 o0 | @0 00 [ DO 0000 0060 00 00
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F2 ¢ o0 ©O0 00| 00 o0 | @80 00 ©0 00 | @O 00 | G0 00 @0 00|40 00 04
F3 66 00 06 OO0 @0 00 ©0 00 ©0 00 00 40 00 00 80 00 01 00 10

In each column the largest entry of the eigenvector is in Bold, linking the largest singular value to a
parameter. R3 does not dominate any of the singular values. Most of the parameters can be identified
separately for the storms applied.
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6.4 Monitoring locations

This section goes more into detail on the set of monitoring locations obtained by applying the genetic
algorithm. Three sets of monitoring locations were obtained after running the genetic algorithm 12
times. Intuitively the set with the highest information content, corresponding to the largest sum of
singular values was analysed. This set is characterised by a number of sensors close to CSO structures
with the lowest crest levels. The eigen vectors determined by the dry weather flow and the channel
bed friction are presented in Table 4.

Table 4. Selection of the singular values and corresponding eigen vectors determined by the DWF and channel
friction

Singular values
1.699863 1.430787

Parameter Eigen vectors
Dry weather flow sewer system -0.7 -0.7
Channel bed friction 0.6 -0.7

The first column implicates that a decrease in the dry weather flow in the sewer system can be
compensated by an increase in the channel bed friction in order to obtain the same model results, and
means the parameters cannot be identified separately. This can be explained by looking at the
characteristics of the system; due to the low crest levels an increase in the channel bed friction will
force a larger volume of surface water in the sewer through the sewer overflow structures. The
decrease in dry weather flow is compensated by this volume. However, the second column claims the
opposite. This is due to the fact that the water levels in the channels are not increased during the
whole simulation period, resulting in deviating model results in the remaining time steps. for the
second best set of locations obtained by applying the genetic algorithm, these parameters can be
identified separately. Therefore, this set of monitoring locations is used during the remainder of this
thesis. The resulting singular values are already presented in Table 3, and the spatial distribution of
the sensors is shown in Figure 48 and in more detail in Annexe 1IV.
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Figure 48: Spatial distribution of the 12 sensors derived from the optimisation algorithm

By analysing the singular value decomposition of the individual monitoring locations, a distinction can
be made in what information is collected from what location. It is found that location 1 in Figure 48
has the largest sum of singular values. This is due to the extra discharge from the nearby pressure
main, which increases the effect that a change in certain parameters have on the water level. One
could question the suitability of this monitoring location, since the pressure main can cause unwanted
turbulence that can decrease the measuring accuracy. Runoff parameters R4 and R5 are more
pronounced at other locations, which is in accordance with the distribution of the connected surface
area. Surface water related friction is dominated by the monitoring location in the surface water, as
would be expected. Information on weir related parameters is best obtained from monitoring locations
near the corresponding weir. It could be considered to remove location 7; the total information
content of this location is only 15% of the system average and it does not contribute to the overall
system redundancy due to a round-off error as is explained in more detail in section 7.2.1. In general,
the total information content of a location is not a valid criteria to judge whether a monitoring location
can be removed from the system, since it is often found that these locations contribute significantly to
the identifiability of a single parameter (e.g. weir coefficient). However for location 7 this is not the
case.

6.4.1 Sensor correlation

Performance of the de-correlation algorithm is judged by analysing the correlation coefficients of the
chosen monitoring locations. Two groups are distinguished; one group where a correlation>0.6 is
promoted which consists of one value per sensor, and one group comprising the remaining values per
sensor excluding the correlation with the location itself where a correlation>0.3 is punished. The
results are presented in Figure 49.
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Figure 49: Box and Whisker plot of the correlations coefficients for the derived monitoring locations

The right plot contains the largest correlation value for each location, excluding the correlation each
location has with itself. Therefore this plot can be used to judge the promotion of correlation with one
other monitoring location for the purpose of data validation and redundancy. One can see that that
the promoted correlations are all in the range indicated by (Harder, 2010) except for one outliner.
This value is caused by a rounding off error in the correlation matrix that allows the sensor to be
correlated with itself, causing the location with the highest correlation to be specified by the
correlation-punishing function. this type of error can easily be addressed by implementing a function
that rounds of the values before comparing it to the standard.

The remaining correlation values for the other locations are included in the left plot. This boxplot
shows to what extend different sensors in the monitoring network collect the same information. it can
be seen that approximately 75% of the values have a correlation smaller than 0.35 when a correlation
threshold of 0.3 was applied, indicating diversity in the information collected. 4.5% of the values in
this plot are outliners with a correlation larger than 0.71. Most of these outliners can be ascribed to
locations with an information content > 99% of all locations, meaning that for these locations the
information content outweighs correlation.

6.5 Measuring frequency

As mentioned in Chapter 2.3.1 Frequency domain analysis is applied to find an upper boundary for the
measuring frequency. Dutch design storms served as hydraulic load, which are known for their high
rain intensities resulting in a low characteristic timescale (Clemens, 2001). It was found that for most
potential sensor locations no realistic upper bound for the sampling interval (At > 1 min) could be
determined. This means that increasing the sampling frequency above once every minute can
potentially result in an increased information content.

For the case study the singular values are determined for different sampling intervals. The singular
values presented in Figure 50 are normalized with respect to At = 1 min. This graph provides insight
in how the singular values decrease with an increasing sampling interval, and the variation in decrease
over the different parameters values.
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Figure 50: Singular values normalized with respect to At = 1 min for 27 different parameters

For larger sampling frequencies the decrease in singular values is equal over the whole set. When the
sampling frequency is decreased, the variation in the normalized singular values increases. The
normalized values for some weirs decrease faster with respect to the mean. This can be ascribed to
the difference in characteristic time scales; during overflow mode the characteristic timescale is less,
therefore making a small sampling interval necessary in order to obtain sufficient information to
reconstruct the process. The weir coefficients that decrease less over increasing sampling intervals are
found to have lower crest levels, therefore providing information over a prolonged period.

For two parameters, the sampling interval of four minutes has a larger information content than for a
sampling interval of t minutes. These parameters refer to the surface water system, where the water
levels have a small sinus like distortion. Due to the fact that four is no integer multiplication of three,
the sampling interval of three minutes does not contain all the same points as the sampling interval of
four minutes. Further examination of the Jacobian showed a period that had less peaks at the
sampling interval of three minutes.

Even though Figure 50 shows the decrease of singular values for the whole system, it provides no
insight in the distribution of this information over the different potential locations. If the decrease of
the total information content is spread over only a limited amount of locations it is deemed acceptable,
since only a small number of locations can be monitored.
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Figure 51: Cumulative distribution function of the relative information content, with enlargement of the top part

The data presented in Figure 51 shows that the distribution of the information for two different
sampling intervals corresponds to a large extend, indicating an equal spread of the information
content. An enlargement of the top 98.5% (corresponding to the best 15 locations) illustrates that for
a smaller sampling interval the best locations hold a slightly higher portion of the total information
content, especially for the best location.

Again the eigen vectors are studied in order to see if the different parameters can be identified
separately when the sampling interval is increased. Standard design storm 02 is used, in order to
minimize the characteristic timescales of the different processes. The lower boundary for the sampling
interval was set to At = 1 min and increased with a time step of one minute. Between a sampling
interval of one and three minutes no significant changes in the eigen vectors are found. It should be
noted that the eigen vectors cannot be directly compared over different time steps, since the
dominating parameter can change due to the fact that singular values for some parameters decrease
faster with an increasing time step. Between the sampling interval of three and four minutes, the
entries of the eigen vectors corresponding to the weir coefficients change substantially.

Table 5: Eigen vectors dominated by weir coefficients in descending order with respect to the singular values, At
=3 min

Parameter Corresponding eigen vectors for At = 3 min

w2 -1.0 00 0.0 0.0 0.0 0.0 0.0
w4 0.0 0.0 0.0 0.0 0.0 0.0 1.0
w7 0.0 00 -01 -02 0.0 1.0 0.0
wi1i 0.0 00 -03 01 0.9 0.0 0.0
W3+W5 0.0 0.2 -0.3 0.9 -0.2 0.2 0.0
W1+W6+W8+W10+W13 0.0 02 -09 -03 -02 -02 0.0
W9+W12+W14 0.0 09 0.2 -0.1 0.1 0.0 0.0
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Table 6. Eigen vectors dominated by weir coefficients in descending order with respect to the singular values, At
=4 min

Parameter Corresponding eigen vectors for At = 4 min

w2 1.0 0.0 0.0 0.0 0.0 0.0 0.0
w4 0.0 0.0 0.0 0.0 0.0 0.0 -1.0
w7 0.0 0.0 0.1 0.0 -0.2 -1.0 0.0
wi1i 00 -01 0.2 -0.2 0.9 -0.2 0.0
W3+W5 0.0 03 0.7 0.6 -0.1 0.0 0.0
W1+We6+W8+w10+W1i3 0.0 0.4 0.5 -0.7 -0.2 01 0.0
W9+W12+W14 0.0 0.8 -0.5 0.1 0.2 0.0 0.0

Table 5 and Table 6 give an overview of the eigen vectors dominated by weir coefficients for the
sampling interval of three minutes and four minutes respectively. The parameters in Table 5 can all to
a large extend, be identified separately. This is not the case in Table 6, where the goal function is
sensitive to an increase and/or decrease of the last three parameters.

It can be concluded that based on the decrease of singular values with an increasing sampling interval
and the distribution of the information content over different locations no indication of the lower
boundary for the sampling frequency can be obtained. However, analysis of the eigen vectors indicate
that for this particular system the separate identifiability of the weir coefficients reduces significantly
for a sampling interval higher than 3 minutes.

Chapter Summary

e Application of a genetic algorithm for the design of a monitoring network drastically
reduces the computation time needed, while still approximating the maximum
information content

e For the case study, the size of the parameter set is reduced by clustering parameters
that cannot be identified separately. Due to the characteristics of the system,
especially the number of weir related parameters can be reduced in this way.

e It is found that an increase in the sampling interval does not only result in smaller
singular values, but has a significant impact on whether parameters can be identified
separately. The latter is used to derive a lower boundary for the measuring
frequency.

e The de-correlation algorithm is applied to the case study, and is successful in
implementing the desired overlap in the monitoring network.
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7 Data assimilation in urban drainage modelling

The EnKF introduced in chapter 5 is implemented in the hydrodynamic software package Sobek by the
open interface standard OpenDA. OpenDA is supported by the TU Delft, Deltares and VORtech and
comprises different data assimilation and calibration methods. Since the source code of Sobek is not
altered, communication between both programs is achieved by reading/writing the input and output
files of Sobek. This is called the blackbox model approach, since OpenDA controls the input and reads
the output but has no further interaction with the model. In order for OpenDA to be able to read and
write the necessary Sobek files, the drafting of several java files is required. The java files essentially
govern the communication between both programs and are specific for the model used. OpenDA
settings are specified in XML standard (Extensible Markup Language). Observations are generated
using the twin model concept introduced in Chapter 5.2.1. Figure 52 shows the place of OpenDA and
Sobek in this concept.

Rainfall data, etc

Improved
prediction

Figure 52: Twin model concept for Sobek and OpenDA

The runtime of the Sobek model needs to be controlled by OpenDA, because following every new
observation a new Sobek run is started in order to implement the updated state. This principle is
schematized in Figure 53. The top plot shows a normal simulation, and the bottom plot shows the
same simulation period divided over five individual simulations. These simulations are denoted as sub
runs in this thesis.
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Figure 53: Difference between a normal simulation and a EnKF simulation for an arbitrary mode/

In order to demonstrate the compatibility of Sobek and OpenDA, the EnKF is first applied to a small
two node hydraulic model. Subsequently, data is assimilated is applied to the case study.

7.1 Two node model with constant inflow

A schematisation of the simple two node model is presented in Figure 54. The hydraulic load consists
of a constant discharge at one of the nodes.

Figure 54: schematisation of the Sobek model containing one link and two computational nodes

In order to further simplify the model, the cross section of the pipe linking the two nodes is
dimensioned large compared to the inflow. Therefore the system will react as a reservoir with an
equal water level at both nodes. This means it is a valid assumption to neglect the momentum
balance, and the state only needs to contain the water level. Water levels are obtained from the
model output of the last time step, and imported in the initial condition file after the addition of noise
by a customized java file.
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The observations consist of perturbed water levels at the node opposite of the node with the inflow,
derived from a copy of the model with discharge @, Imperfections in the model are simulated by
specifying a different flow rate in the assimilation model, namely @, This means that even if the
water level is corrected to approach the observation it will deviate again over time, making an update
of the model state necessary when new observation are available. Robustness of the EnKF is tested
further by specifying the wrong initial water level. The resulting water levels are presented in Figure
55.
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Figure 55: Observations and model predictions of the EnKF

The ensemble Kalman filter performs as expected; after one timestep the calculated water level
equals the observation. Due to the fact that @, is smaller than Q; the water level requires correction
each time a new observation is available.

7.2 Delft city centre case study

Subsequently, the EnKF is applied to the case study, where the monitoring network designed in
chapter 6 is used to provide the necessary observations. This monitoring network is designed using an
integrated sewer and surface water model. However, the model used for data assimilation only
contains the sewer model. This due to the following reasons:

— The surface water model has been constructed to run the channel flow module and the runoff
module simultaneously in order to simulate interactions between the components, while OpenDA
is programmed to run the modules in sequence.

— The necessary java files required to incorporate the boundary conditions into the state are not
drafted at this time.

For both the runoff module and the sewer flow module, the state at the end of each sub run needs to
be transferred in order to serve as an initial condition for the next sub run. Sobek has the ability to
create restart files at the end of each run. A restart file contains initial conditions that can be used as
a starting point for a new simulation. Noise needs to be added to the state of each ensemble member
in order to introduce the spread in the model ensemble. Since no Java file is drafted to read or write
these restart files at this time, OpenDA is not able to add noise to the complete state. This results in
the setup is schematized in Figure 56. The state is transferred to serve as initial condition for the next
sub run, but is not updated since no noise is added.
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Figure 56: Setup used to transfer the state after each analysis step

This results in a situation where any deviation with the observations can only be compensated by a
change in the parameter values, and the state is only influenced indirectly. This means that if the
effect of a parameter is not or only partly perceptible within one analysis time step, the algorithm is
inclined to change the parameter even further. This will eventually result in an overshoot of the model
prediction. This principle is schematically shown in Figure 57.
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Figure 57: Divergence of the optimisation method due to

An example of such a parameter can be the runoff delay parameters in the runoff model. In order to
prevent this phenomenon from occurring, noise should be added to the complete state of each

ensemble member.

For the application of data assimilation for the case study, the observations are derived from water
level series created by Sobek for the locations denoted as monitoring location in Chapter 6. The first
run had an analysis step every 15 minutes, with a computational timestep of 1 minute and a total
duration of 90 minutes. Evolution of the water depth for an arbitrary location is represented by the
dotted grey line in Figure 58. Since no parameter was optimized, one would expect this line to be
equal to water depth derived if the complete timeframe was run at once (black line). It can be seen
that the six simulations of each 15 minutes do not only result in a delay in the water level peak , but
also lower water levels in general. This suggests a discrepancy in the inflow in the sewer system
coming from the runoff model.
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Figure 58: Difference in calculated water depth when the model is run in several parts

More insight in this phenomenon is gained by comparing the water balances of the runoff model. The
precipitation for both simulations is presented in Figure 59. Over time the difference in the total
amount of precipitation increases. Since the same water balance shows that the relation between the
precipitation and the runoff is equal for both simulations, the difference in runoff can be attributed to
a loss of precipitation.
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Figure 59: Cumulative precipitation for when the storm event is simulated in one run and in six sub runs

Decreasing the analysis time step and thereby increasing the number of sub runs needed to complete
a simulation period of 90 minutes, results in an increasing amount of precipitation lost. Therefore it
can be concluded that the smallest numerical error is obtained when the analysis time step is as large
as possible. In order to decrease the loss of precipitation the timestep of the storm event is reduced
from 5 minutes to 6 seconds. After this modification the difference between the single run and the 6
sub runs is negligible. However, this comes at a price; since the calculation time step cannot be larger
than the storm event time step, the calculation time step needs to be reduced as well. This increases
the computational load dramatically.

7.2.1 Analysis of the results

Results for a run with 100 ensemble members where the pipe roughness and the dry weather flow are
optimized is presented in Figure 60. The EnKF does not perform as intended, since the simulated
water depth deviates from the observations even though the initial parameter values were correct.
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Figure 60: simulated water depth for one of the monitoring locations compared to the observations

After the third analysis step the EnKF slightly over estimates the water depth. This is compensated at
the fifth analysis step, but results in parameter values that underestimate the water depth again the
next step. At this point the estimated parameter values become negative, and therefore the model is
unable to produce reliable results for the rest of the simulations. The lack of performance of the EnkF
can likely be ascribed to the fact that no noise is added to the state, that for the flow model consists
of the water levels and flows for the different calculation points. Although an increasing number of
sub runs introduces a numerical error, the calculation time step of six seconds is deemed to be
sufficient small in order to limit the effect on the model output.

The total computation time needed for a EnKF simulation with an ensemble size of one is comparable
to the computation time needed for a normal simulation. It is observed that the computation time
needed is proportional to the ensemble size as expected. Therefore the feasibility of the EnKF in the
field of urban drainage is directly linked to the ensemble size needed to produce reliable results.

Chapter Summary

e The EnKF is implemented in Sobek by OpenDA. Communication between the model
and OpenDA takes place through several model specific Java files.

e For a simple 2-node model the EnKF performs as expected. The filter has no problem
with the initial estimation or the incorrectly specified flow.

e The performance of the EnKF for the Case study is poor. This can likely be ascribed to
the fact that at this point, not all the Java files needed to add noise to the complete
state for this particular model are drafted.

e A balance error in the precipitation is observed when the EnKF is implemented in
OpenDA. Although the cause of this error is not found, a smaller model time step
does result in a reduction of this error at the cost of an increase in computational
load.
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8 Conclusions and recommendations

The basis of this thesis is the application of data assimilation in the field of urban drainage and the
design of a monitoring network. The Ensemble Kalman Filter (EnKF) is introduced as data assimilation
method and tested for a simple example implemented in Matlab®. Furthermore, the EnKF is
implemented by the open source toolbox OpenDA for the hydrodynamic software package Sobek.

Theory on the optimisation algorithm for the design of a monitoring network as proposed by
(Henckens & Clemens, 2004) is expanded. The information content of potential monitoring locations is
judged by analysing the singular values of the Jacobian matrix, which are calculated using a singular
value decomposition. Furthermore, the influence of the sampling interval on the information content is
evaluated in order to derive a measuring frequency.

8.1 Conclusions
The conclusions are divided into a general section, and a case specific section.

general

— In addition to the ability to identify relevant model parameters, a singular value decomposition
can also be used to judge the information that potential monitoring locations can collect on these
parameters.

— applying the expanded de-correlation algorithm in the optimisation process results in a monitoring
network where each sensor has at least one well correlated sensor. This makes the network less
sensitive to the effects sensor failure, since the information loss in case of a faulty sensor will not
be as severe. Moreover, the overlapping information can be used for the cross validation of the
collected data.

— Since the number of combinations of locations increases extremely when the total number of
potential monitoring locations is expanded, it is not feasible for larger networks to calculate all
possible combinations in order to find the best set of monitoring locations. Applying a genetic
algorithm is a practical alternative, capable of finding a set of locations that approaches the
combination that provides the most information on the system. A sufficient large population is a
prerequisite for the success of this algorithm. The population size needed is depended on the
number of locations where a sensor can be installed and the number of sensors to be placed.

Design process

Singular value
decomposiion

information content

Genetic algorithm De-correlaion

Monitoring netwark

Figure 61: abbreviated schematisation of the optimisation process
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The optimisation process schematized in Figure 61 is an abbreviated version of Figure 26, and
shows the relation between the prior enumerations in this paragraph. This optimisation process
results in a set of monitoring locations that maximises the information content for a fixed number
of sensors and is able to provide sufficient data for data assimilation.

Since the EnKF integrates an ensemble of states forward in time in order to estimate the process
noise covariance matrix, a larger ensemble size will result in a better estimation. Since the
computation time needed is approximately proportional to the ensemble size, the feasibility of the
EnKF in the field of urban drainage will depend on the ensemble size needed for the system in
question.

A set of parameter values belonging to a reservoir model have successfully been determined by
implementing the EnKF as data assimilation method in Matlab®. The EnKF proves to be robust
with respect to the initial estimation of the parameter values and the variability in the model input.

Case specific

8.2

Relevant process parameters for the case study are those related to the run-off model, dry
weather flow, pipe friction and most weir coefficients. Some weir coefficients can be omitted due
to the fact that they correspond to nearly zero singular values, others can be clustered because
they cannot be identified separately.

Friction in the surface water system does influence the sewer system, indicating an interaction
between both systems. However, this influence is limited indicating the surface water system
created by closing the adjustable weirs reacts more like a reservoir for the storm events applied.
Analysis of the correlation matrix indicates that the de-correlation algorithm is successfully applied;
most sensors have one well correlated sensor, while the correlation is minimized for all other
locations.

Increasing the sampling interval, results in a relative steady decrease of the singular values for
the case study. However, for a sampling interval larger then 3 minutes it is found that it is no
longer possible to separately identify most of the weir coefficients. Therefore one can conclude
that based on the results of a singular value decomposition an upper boundary for the sampling
interval can be determined.

OpenDA has been successfully used to implement the EnKF for the hydrodynamic software
package Sobek. Predictions for a simple model consisting of one link and two computational nodes
improved significantly. Tests with a sewer model comprising the city centre of Delft have been
unsuccessful at this point. Due to time constraints, the necessary java files needed to add noise
directly to the state are not compiled for this case. This is likely to be the cause of the poor
performance for this particular case. Therefore, at this time it cannot be concluded that data
assimilation can be applied to models in urban drainage in order to simulate field observations for
continuous time series.

For the example with the simple Sobek model, an ensemble size of 30 is sufficient in order to
obtain reliable estimations. However, this example is not considered to be representative for the
complex sewer systems found in practice. Therefore no confirmation can be made about the
ensemble size needed for the case study.

Recommendations

The recommendations are divided in a section concerning the design of a monitoring network and a
section concerning data assimilation.

Data assimilation
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In its current form, noise is not added to the complete state of the Sobek model, likely resulting in
the poor performance of the EnKF for the case study. Therefore it is recommended that the



necessary Java files are drafted so that the application of the EnKF for the case study can be
studied.

Further research is needed on the effect of an increasing number of ensemble members on the
accuracy of the EnKF estimation for hydrodynamic models in urban drainage in order to
demonstrate the feasibility. (Gillijns, et al., 2006) propose to use the mean squared error to
evaluate the effect of the ensemble size on the accuracy of the results.

The EnKF splits a simulation up in a number of simulations with a shorter timeframe in order to
implement improvements to model parameters. Running several simulations for a shorter
timeframe introduces a balance error inherent to the model used, due to the fact that a part of
the precipitation does not end up in runoff model. decreasing the storm event time step reduces
this error, but increases the computational load. This balance error should be investigated more
thorough in order to find a less computational expensive solution.

In its current form, the implementation of the EnKF for Sobek requires the drafting of separate
java files for almost each parameter or quantity of interest. Therefore it is advised to change the
Sobek database structure to be more compact so that fewer java files need to be drafted, and
that the interaction between the different components of the model are more clear.

Design of a monitoring network

The system in the case study used to test the de-correlation algorithm is considered to be a flat
system. Since the correlation between monitoring locations is influenced by the slope of the
system, the performance of this algorithm should also be investigated for a sloped system.

Due to the fact that one storm event is used for the entire system, every part of the system
experiences the same hydraulic load at the same time. This can result in spurious correlation
between locations that may not even be in the same system (Henckens, 2012). It is advised to
further research the occurrence of spurious correlation in order to secure the added value of
correlation between sensors in practice.
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Annexe IlI: Applied storm events

The historical storm events used in this thesis are derived from a single rain gauge located near the
south-east boundary of the case study. This device does not record the rain depth on a fixed time
interval; instead the sampling frequency is increased depending on the intensity of the storm. In order
to obtain a value for the rain intensity, differentiation and integration with fixed boundaries is applied.

Since the layout of a monitoring network is strongly influenced by the storm event applied (Henckens
& Clemens, 2004), three different storms are used for the design in this thesis. It should be noted that
the storm choice does not only influence the layout of the monitoring network, but also the
determination of the relevant parameters due to the fact that the singular values are analysed for
every storm. The total rain depth of each storm is sufficiently large in order to fill the entire sewer
system and allow for the occurrence of CSO'’s.

The first storm selected is standard design storm 02 from the Dutch sewer guidelines, which
corresponds to a return period of four times per year. This storm is relatively short and is
characterised by a high peak at the end of the storm, as seen in Figure 62. The model calculates that
pluvial flooding occurs locally when a design storm with a higher return period is used.

Rain intensities standard design storm 02
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Figure 62: Standard design storm 02 with a return period of 0.25 years

The first historical storm is chosen from Table 7. This table comprises storm events with a daily
precipitation sum between 15 and 25 mm. these somewhat arbitrary boundaries are stated to find a
historical storm with a longer duration compared to design storm 02 without resulting in pluvial
flooding. Based on the peak intensity, the location of the peak in the storm and a sufficient long dry
period before and after the storm, the storm on 19-01-12 is chosen.
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Table 7: Storm events with a precipitation sum between the 15 and 25 mm

Event number Date Daily sum (mm) Peak intensity (mm/5min)
1 19-06-11 21.0 1.80
2 12-07-11 20.4 1.45
3 08-08-11 15.1 0.78
4 26-08-11 16.8 6.33
5 27-08-11 21.4 1.69
6 07-10-11 18.0 2.22
7 01-12-11 21.0 0.90
8 16-12-11 16.4 1.06
g 03-01-12 18.4 2.27
10 19-01-12 18.4 0.46
11 07-03-12 15.6 0.36
12 28-04-12 15.0 0.85
13 02-05-12 16.2 3.76
14 04-06-12 15.2 0.52
15 11-06-12 15.1 3.72
16 15-06-12 15.6 1.66

Progress of this storm is seen in Figure 63. The duration is approximately 12 hours, and has several
peaks with a maximum intensity of 0.46 mm /5 min.

Rain intensities storm 19-01-12

15 \ \ \ \
| | | | | | | | | | | | |
| | | | | | | | | | | | |
] O I O S (RSN S S SO
— | | | | | | | | | | | | |
E | | | | | | | | | | | | |
(Y I S N S SO S SR N S AU NN SRR N
2 T
é | | | | | | | | | | | | |
P ] A O O SOt O DU RO RO S N
1)) | | | | | | | | | | | | |
5 A
E 0'5 77777 4 - — — — l— — — — — T - — — — — N l— — — — — I - — — — — 4 - - - l— — — —
E | | | | | | | | | | | | |
® | | | | | | | | | | | | |
ﬂ: | | | | | | | | | | | | |
025 | | | | | | | | | | | |
LD [T T T T T TIHA0 1 & § TR gl T T T T [ | L — - 77 "Nl T | |
: o el a1 } o
| | | | |

0

0:00 1:00 2:00 3:00 4:00 5:00 6:00 7:00 9:00 10:00 11:00 12:00 13:00

Time (hours)

o
o
S

Figure 63: Historical storm 19-01-12

The second historical storm event is chosen to provide information on the importance of surface water
related parameters. According to (Wijngaard & Kok, 2004)return periods for water systems varying
between the 0.5 years and two years correspond to a daily precipitation amount between 28 and 39
mm. The only storm event to meet this criteria in the time series available, is the storm of 24-07-11.
The total amount of precipitation is 37 mm with a peak of 0.95 mm/5 min.
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Rain intensities storm 24-07-11
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Figure 64: Historical storm 24-07-11
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Annexe IV: Layout of the monitoring network
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Annexe V: Kalman filter example

The following example concerns with the correction of a navigation system and can, to a large extend,
be regarded as a citation from (Simon, 2001). Because of the simple nature of the system it is a
perfect case to provide insight in the propagation of the covariance matrices in time and the contents
of the state equations.

First the State equation is described by

X = AXy + W,

Where:

Xy = state at time k

A = matrix containing information on the quantities affecting the state
W, = process noise

The observations are related to the state by

Xk = g)—(k Ly

Where:

Y, = observations at time k

Xy = state at time k

g = matrix relating the state to the observations
Zy = measurement error

The process noise and measurement error are drawn from a normal distribution with mean zero and
standard deviation o,, and o, respectively. For the navigation system the state consists of the position
and the velocity, while the acceleration and the time are known input. From the equation of motion
we know that:

Vi =V, +a At

Where:

1% = velocity

a = acceleration
At = timestep size

Integration with respect to time yields

1
%H=%+Wm+5%m2

Where:

s = position relative to sy
v = velocity

a = acceleration

At = timestep size
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These equations can be rewritten as a set of linear equations fitting the state and observation
equations. The only quantity observed is the position.

. [t Atx+o.5At2a+W
Ak+1 — 0 1 2k At =k 2k

Yer =l Olxc+z,

The acceleration is not placed in the state matrix since it is considered to be input by the driver of the
vehicle. The measurement error covariance matrix and the process noise covariance matrix are
defined as

22 = E(Zkll )

S, = E(ww)

Where:

S = noise/error covariance matrix
E = expected value

T = transpose

Z, = measurement error

W, = process noise

In order to derive the covariance matrices some assumptions concerning the example have to be
made. It is assumed that the position is measured with an error of 10 meters (measurement error)
and that commanded acceleration is a constant 1 m/s®* with a process noise of 0.2 m/s%. With a
timestep of t = 0.1 s the following matrices are obtained

1 0.1 0.005
X1 = 0 1 Xt 01 a + W,

Yo, =11 0]x +z
In the model the error of the position is proportional to 0.5:At?* & and the velocity to At* a, with a

= 0.2 the position and the velocity become proportional to 5:10° and 2-102 respectively. This relation
is used to set up the following covariance matrix

S 2 LAt*.0.2° L1At*.0.2°
T Y O - I i
= Vv VS Vv SAt"-0.2°  At°-0.2

Since only the measured position is subject to a measurement error, the error covariance is described
by:

z

S :E(zzT)zlo2
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The following Kalman filter equations are used to update the state:

xi=x K, (v, -y

-1
K, =PC"(CP,C"+s,)
LT ) =T + éw _égkgT Sz_lggké‘T
Where
)_(';1 = actual state
5; = forecasted state
K = Kalman gain
Xk = observation
X: = prediction of the quantity to be observed
E = model state error covariance matrix
g = matrix relating the state to the observation
é = matrix containing information on the quantities affecting the state
éw = process noise covariance matrix
S = measurement error covariance

N

Since the position and the velocity at the start are zero we know the initial condition as well as the
initial error covariance matrix; if the state is exactly known the error covariance matrix is the zero

matrix.
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Annexe VI: OpenDA structure

The three main components specified in the main OpenDA file are the algorithm, stochastic observer
and the stochastic model. The former contains the settings concerning the calibration or data
assimilation method used. The stochastic observer refers to the observations used. The latter contains
information on the model and the parameters or state and consists of three layers, each represented
by one file. This scheme is presented in the diagram in Figure 65.

=
%

Blmeridin 3o sireer , Snnciustte reees) ”

L

Figure 65: diagram of the xml build of OpenDA

Stochastic model

The schemes presented in Annexe VII show the relation between the xml files that comprise the
Stochastic model, the corresponding java files and the model input for an arbitrary simple calibration
example. Calibrating the constant dry weather flow in Sobek requires modifying the input file:
“pluvius.dwa’. The amount of DWF (I/hr*capita) is defined in the field next to the field containing the
string wc. StochModelConfig.xml is the outer layer file and contains information on the parameters
being calibrated and step sizes used in the process. Modelconfig is the middle layer and includes more
detailed information on the location of the files being edited and the items being exchanged between
the model and OpenDA. Finally, wrapperConfig is the inner layer contains references to the java files
controlling the input files and information on the executables of the model. The java files are used to
read and write the parameter values as OpenDA pleases.

Running the EnKF in OpenDA requires a somewhat different setup. This is due to the fact that an
update is performed after each iteration and noise needs to be added to the state. Therefore instead
of running a simulation based on the whole time series and then making another run with a different
set of parameter values, each ensemble member is run one step. After the analysis, the state is
updated and another simulation step is performed. It can occur that the file where the state is read
from, is not the file used as initial condition for the next run. For the example presented in Annexe VII
the dry weather flow is used, which can be accessed for output as well as input.
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Stochastic observer

When no “real” measurements are available, simulation output can also be imported. Observations
can be produced by a model for a specified measuring interval and locations. StochObserver.xml
contains information on the java file needed to translate the observations to a standard
comprehensible by OpenDA. To incorporate the noise present in real measurements, an extra noise
term is specified in the uncertaintyModule. An example of the uncertainty file in the OpenDA interface
is presented in Figure 66.

|2} stochol inties.xml - CpenDatppiication I . i g "= B - = | &
File Control
| &3 open Save \\}ﬂ Stop Dause
“Input | Control | Output | Costfunction |
[ stochObsUncertainties.xm! |~
Active [ Name | Basic Value POF Type rPDF Graph
| 2 Waterdeoth mean (m) Muse actualvalue LIS 5.2 r T
bl I3 mean (m) luse actual value Normal =] (40
35
Ell
25
2
15
10
. =
N L L L L L I L
VA 1 2 3 4
o’

Viewing Mod:

(® [Prabability, Densityl ) Cumnulative Probability

rPDF

Mame Value

hiean
Std 0.009999999776482582
Std is factor 0.0

Figure 66: an example of Gaussian white noise added to observations produced by a model
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