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The DCSM

e | arge part of the area lies below mean sea water level

e 1 Feb 1953: severe storm surge, casualities in southwestern part

e Delta project: dikes, moveable surge barriers at the entrance of Harbor
e DCSM is used in the Netherlands for Storm surge warning service
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DCSM (v6)

e DCSM version 6 Is the recently designed water level model
e Covers a much larger deep water area than the operational DCSM
e Spatial res. that is a factor 5 finer in both lat. and long. directions

e Objectives:

Extend the time horizon of the water level forecasts
Forecasts for a dense distribution of locations along the Dutch coast
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Variational Data Assimilation

e Consider a nonlinear discrete model for the state vector x € R"” from
time t; to time t; .1 IS given by;

X(tip1) = Mi[x(t), 7] (1)
y(t)) = H[x(t;)] (2)

H : R" — RY s an operator that maps the model fields on observation
space with y € RY
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Variational Data Assimilation

e Control(cost) function is introduced

J(v) = Z[Y(t/) — Hx(t)]" R y(t) — H(x(8:))] (3)

The difference between data and simulation results is only due to mea-
surement errors and incorrectly prescribed model parameters.

e Cost function Is usually minimized using a gradient based algorithm which
determines the gradient.

e Gradient Is usually obtained by solving the adjoint problem.
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Adjoint Method

e Advantages

— Adjoint method (ADJ) efficiently computes the gradient.
— It 1s Independent of the number of variables to be estimated.
— Exact gradient

e Hurdles

— Implementation
— Memory
The adjoint equation need to be integrated backward in time.The
original problem must be stored for all time steps. The memory access
will therefore be very huge for large scale problems
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DCSM

e One outer iteration with POD method (Altaf et al. 2009 (IJMSCE)):
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Proper Orthogonal Decomposition (POD)

e Statistical tool to analyze experimental data:

The POD is used to analyze the set of realizations with a view to extract-
ing dominant features and trends (coherent structures called patterns in
space)

e Reduced Order Modeling (ROM):

The POD is used to provide a relevant set of basis functions with which
we can identify a low-dimensional subspace on which to construct a model
by projection of the governing equations

]
TU Delft E— _ _
Parameter Estimation in a Large Scale Dutch Continental Shelf Model; Altaf et al., (slide 12)



POD

e A set of s snapshots £ = {ey, &, -, e} € R" are collected for some
physical process taken at position e.

e Construct the covariance matrix Q € R"*"
Q — EET (4)

o P ={py, po, p3, - } are eigenvectors of a n x n eigenvalue problem with
eigenvalues A\y > Ao > A3 -

e Select the most dominant eigenmodes (patterns) based on the dominant
eigenvalues A\,
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Ensemble Approach

e An ensemble of snapshot vectors of the forward model simulations is
collected.

e [ he snapshots are perturbations with repect to estimated parameters “y;

OM[XP(ti—1), Vi _ Milx"(ti-1), ¥2 + Avi] — Milx°(t 1), ¢
a’Yk A’Yk
(5)

ek(t,-) —

e A reduced POD basis is obtained on the basis of this ensemble.
e [he dimension of reduce model is small than that of original model.

e Reduced model has linear characteristics. So it is easy to build a adjoint
model for the computation of gradient.
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DCSM

e [ he North sea i1s much shallower, with maximum depth around 200m
e English channel the depth are mostly less than 50m
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Location of Stations
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results

e comparison of POD results with DUD method

e results are approximately equal

e [nitial RMSE: 24.87

POD|DUD

Adjustment(m)| 2.30 | 2.56
RMSE(cm) | 9.34| 9.0
Simulations | 3.5 | 5.0

e encouragement: To investigate more parameters
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results

StationName |Initial RMSE|RMSE
Brouwhvsgt02 0.256 0.10
Brouwhvsgt08 0.238 0.101
Cadzd 0.366 0.111
Denhdr 0.169 0.082
Eurpfm 0.200 0.096
Harvtl0 0.248 0.105
Hoekvhld 0.210 0.120
Huibgt 0.244 0.076
[ymd 0.206 0.085
K13 0.112 0.044
Lichtelgre 0.248 0.109
Noordwmpt 0.220 0.104
Oostedell 0.289 0.098
Pettzd 0.205 0.071
Schevngn 0.213 0.099
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results

e Same POD modes are used in first and 2nd outer iteration ()

Outeriteration(B)|Calibration|Validation
Initial 21.75 19.94
/5t 14.74 13.22
pnd 12.98 11.72

Table 1: Shows the results for the minimization with 97% energy.

Outerlterations(B) | Calibration|Validation
Initial 21.75 19.94
[t 15.44 13.85
nd 13.80 12.42

Table 2: Shows the results for the minimization with 90% energy.
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results

e Comparison of results if POD modes are obtained with new ensemble in
2nd outer iteration

e results are slightly better but the cost of generating this new ensemble Is
huge, specially when the number of parameters are more.

Calibration|VValidation
NewEnsemble 12.53 11.41
SameEnsemble 12.98 11.72
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results

e Similar results are obtained as compared with DUD method

e more efficient than DUD in this case

Calibration|Validation Simulations
POD 10.55 10.54 6
DUD 10.47 11.02 24

Table 1: Shows the comparison of results for the minimization.
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Conclusions

e Classical method, adjoint of tangent linear model
e POD based method gives adjoint of linear reduce forward model
e Selection of boxes Is very impotant for realistic results.

e The POD method Is dependent on the number of parameters. If the
number of parameters are too large, the size of ensemble I1s too big and
It 1s difficult to find a good approximate model.

e [ he cost of ensemble in each outer iteration can be reduced by using the
same ensemble.

e Next step Is to implement POD method in OpenDA
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Ensemble Approach

e [ he reduced basis P Is used to obtain approximate objective function:
J(Ay) = Z[{y(t) — H(x"(t))} — HE(t, Ay)]T
1[{y(t) — H(X*(t;))} — H&(t, Ay)] (6)

£ Is a reduce time-varing state vector;

(@)-(4) (%) o

/\7,- and /\77 are reduced dynamics operators which are computed as:

= pT
M = P o’ (8)
~ oM, oM,
My =P (=" ' 9
Y (a’Yl a’Yu) ( )
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