
 

Vision on the future of Java-OpenDA and Python-OpenDA. 
 
This document describes the vision of the OpenDA association on the future of the Java- and 
Python-based OpenDA. We publish this vision so that both users and developers of OpenDA 
can take this into account for future developments using OpenDA. We begin with a brief 
pointwise statement of the vision, followed by a more detailed explanation of the rationale 
for this vision. 
 

1. Current operational systems should not be affected by any changes proposed to 
OpenDA. 

2. The Java version of OpenDA will remain the main version for operational use for the 
foreseeable future. New developments, outside of those required for operational 
systems, are not expected. 

3. We will use the new experimental Python version of OpenDA (pyOpenDA) for new 
developments and research. 

4. Once pyOpenDA becomes stable, performant, and suitable for operational use, we 
will work on a smooth transition to pyOpenDA for operational systems. 

5. There is no deadline for this transition, as OpenDA developments are dependent on 
projects for development and there is no funding available for core development of 
OpenDA in isolation from usage. 

6. To assist in the long-term maintenance of OpenDA, a number of classes will be 
deprecated (by clearly marking these @deprecated in the Java code) and eventually 
removed from the Java-based OpenDA once they are no longer used by any 
operational system. 

7. This vision will be revised on a yearly basis. 
 

Rationale 
 
OpenDA is used in many operational systems, where the stability of the implementation is 
very important. For this, the Java-based OpenDA implementation is very suitable. The core 
data structures and building blocks are very stable and hardly change. Most recent 
developments of the Java version focus on coupling new models to the framework. 
 
Unfortunately, Java is not a widely-used programming language in academia. It is rarely used 
in teaching, nor do many researchers use it. On the other hand, Python is a popular 
language for research, especially for toolboxes such as OpenDA that interface to many 
existing models written in different programming languages. There is an experimental 
version of OpenDA implemented in Python (pyOpenDA). Going forward, pyOpenDA will be 
the primary version used for research and other experimental work on OpenDA. 
 
Having a separate codebase from the operational Java code allows us to experiment with 
changes to OpenDA, for instance adding new classes of algorithms to the framework for 
machine-learning techniques, without disturbing the operational work done with the Java-
based version of OpenDA. For the time being, we advise not to use pyOpenDA for 



operational systems since new developments will cause existing applications of pyOpenDA 
to break from time to time, requiring perhaps significant effort to update. 
 
The current Java version will be maintained and will remain the main version for operational 
purposes for the foreseeable future. Bugs and performance issues will be resolved, as well 
as limited new features when required for an operations system. 
 
Once pyOpenDA stabilizes to the point that it could potentially be a replacement for the Java 
version of OpenDA, we will start creating stable releases of it. From that moment, 
we will work on a smooth migration for operational systems currently based on the Java-
based version of OpenDA to pyOpenDA. As funding for pyOpenDA is largely dependent on 
projects, there is no deadline for creating the stable pyOpenDA, nor the transition to it for 
operational systems. 
 
As a result of all the developments over the years, Java-based OpenDA has collected a fair 
collection of implementations of more or less equivalent functionality. Some performance-
critical parts of OpenDA were initially written in C. This used to be beneficial for 
performance, but it has been obsolete after performance improvements to Java. In general, 
we see that new models are mostly coupled to OpenDA using the black-box coupling, with a 
number of other more specialized couplings based on ZeroMQ and sockets. To assist in the 
long-term maintenance of OpenDA, we will begin marking some of the older 
implementations as deprecated and will remove these once no operational systems make 
use of them. 


